chứng minh rằng n+1 phần n+2 là phân số tối giản với mọi số nguyên n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ước chung lớn nhất của n - 5 và 3n - 14 là d, ta có
3 ( n - 5) - ( 3n - 14)= -1 chia hết cho d
=> d = -1 hoặc 1, do đó n - 5 và 3n - 14 là nguyên tố cùng nhau
vậy n - 5/3n - 14 là phân số tối giản
gọi ( n3 + 2n ; n4 + 3n2 + 1 ) = d
\(\Leftrightarrow\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}n^4+2n^2⋮d\\n^4+3n^2+1⋮d\end{cases}\Leftrightarrow n^2+1⋮d}\)
Mà n4 + 3n2 + 1 \(⋮\)d
= n4 + 2n2 + n2 + 1
= ( n4 + 2n2 + 1 ) + n2
= ( n2 + 1 ) 2 + n2 \(⋮\)d
\(\Rightarrow\)n2 \(⋮\)d
\(\Leftrightarrow\)1 \(⋮\)d
goi d la UCLN (7n+10;5n+9) ( d thuoc N sao)
=>7n+10 chia hết cho d;5n+9 chia hết cho d
=>35n+50 chia het cho d;35n+63
=>-13 chia hết d
Ma 7n+10 ko chia het cho d => 7n+10/5n+9 la ps toi gian
Gọi d là UCLN( 7.n +10, 5.n+9)
=> 7n +10 chia hết d
5n +9 chia hết d
ta có ; 5(7n +10) - 7(5n +9) = 50 - 63 = -13 CHIA HẾT CHO d
Mặt khác : 7n+10 là số lẻ , 5n +9 là số chẵn => phân số đó tối giản
Mình chỉ làm tắt thôi nhé có gì lên lớp hỏi cô giáo
trog Sách chuyên đề lớp 6 nhé bn , bài này giải ra dài lắm
Gọi d=ƯCLN(n+1;n+2)
=>n+1-n-2 chia hết cho d
=>-1 chia hết cho d
=>d=1
=>PSTG
thx bn nha