1/ Cho a,b,c là ba số dương. Chứng minh rằng : \(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\ge1\)
2/ Tìm tất cả các cặp số nguyên tố (x;y) là nghiệm của phương trình: \(x^2-2y^2-1=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng Bunhiacopxki dạng phân thức:
VT \(\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\) = 1
tìm trên câu hỏi tương tự bạn sẽ có lời giải của Nguyễn Việt Lâm
Áp dụng bđt Cauchy Schwarz dạng Engel ta được:
\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}\)=1
Áp dụng bđt Cauchy-Schwarz dạng Engel ta có :
\(VT\ge\frac{\left(a+b+c\right)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
=> đpcm
Dấu "=" xảy ra <=> a = b = c
Đặt \(\frac{b^2+c^2-a^2}{2bc}=A,\frac{c^2+a^2-b^2}{2ac}=B;\frac{a^2+b^2-c^2}{2ab}=C.\)
Theo giả thiết : \(A+B+C=1\)
Suy ra \(S=\left(A-1\right)+\left(B-1\right)+\left(C+1\right)=0\)
\(A-1=\frac{\left(b-c-a\right)\left(b-c+a\right)}{2bc};\)
\(B-1=\frac{\left(a-c-b\right)\left(a-c+b\right)}{2ac};\)
\(C+1=\frac{\left(a+b+c\right)\left(a+b-c\right)}{2ab}\)
\(S=\frac{a+b-c}{2abc}\left[c\left(a+b+c\right)+b\left(a-c-b\right)+a\left(b-c-a\right)\right]\)
\(S=0\Rightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)=0\)
Có 3 khả năng xảy ra :
TH1 : \(a+b-c=0\Rightarrow A-1=B-1=C+1=0\left(đpcm\right)\)
TH2 :
\(b+c-a=0\).Ta xét : \(A+1=B-1=C-1=0\left(đpcm\right)\)
TH3:
\(c+a-b=0\). Ta xét : \(S=\left(A-1\right)+\left(B+1\right)+\left(C-1\right)=0\)
và \(\Rightarrow A-1=B+1=C-1=0\left(đpcm\right)\)
ÁP dụng BĐT AM-Gm ta có:
\(Σ\frac{a^2}{\left(ab+2\right)\left(2ab+1\right)}\ge\frac{4}{9}\cdotΣ\frac{a^2}{\left(ab+1\right)^2}\)
ĐẶt \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{z}{x}\) thì cần cm
\(Σ\frac{a^2}{\left(ab+1\right)^2}=Σ\left(\frac{xz}{y\left(x+z\right)}\right)^2\ge\frac{3}{4}\)
\(Σ\left(\frac{xz}{y\left(x+z\right)}\right)^2\ge\frac{1}{3}\left(\frac{xz}{y\left(x+z\right)}\right)^2\)
Theo C-S \(Σ\frac{xz}{y\left(x+z\right)}=\frac{\left(xz\right)^2}{xyz\left(x+z\right)}\ge\frac{\left(Σxy\right)^2}{2xy\left(Σx\right)}\ge\frac{3}{2}\)
\(\frac{1}{3}\cdot\left(Σ\frac{xz}{y\left(x+z\right)}\right)^2\ge\frac{1}{3}\cdot\frac{9}{4}=\frac{3}{4}\)
Đúng hay ta có ĐPCM xyar ra khi a=b=c=1
1 .
Từ gt : \(2ab+6bc+2ac=7abc\)và \(a,b,c>0\)
Chia cả hai vế cho abc > 0
\(\Rightarrow\frac{2}{c}+\frac{6}{a}+\frac{2}{b}=7\)
Đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\Rightarrow\hept{\begin{cases}x,y,z>0\\2z+6x+2y=7\end{cases}}\)
Khi đó : \(C=\frac{4ab}{a+2b}+\frac{9ac}{a+4c}+\frac{4bc}{b+c}\)
\(=\frac{4}{2x+y}+\frac{9}{4x+z}+\frac{4}{y+z}\)
\(\Rightarrow C=\frac{4}{2x+y}+2x+y+\frac{9}{4x+z}+4x+z+\frac{4}{y+z}+y+z\)\(-\left(2x+y+4x+z+y+z\right)\)
\(=\left(\frac{2}{\sqrt{x+2y}}-\sqrt{x+2y}\right)^2+\left(\frac{3}{\sqrt{4x+z}}-\sqrt{4x+z}\right)^2\)\(+\left(\frac{2}{\sqrt{y+z}}-\sqrt{y+z}\right)^2+17\ge17\)
Khi \(x=\frac{1}{2},y=z=1\)thì \(C=17\)
Vậy GTNN của C là 17 khi a =2; b =1; c = 1
2 .
Áp dụng bất đẳng thức Cauchy ta có :\(1+b^2\ge2b\)nên
\(\frac{a+1}{1+b^2}=\left(a+1\right)-\frac{b^2\left(a+1\right)}{b^2+1}\)
\(\ge\left(a+1\right)-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{ab+b}{2}\)
\(\Leftrightarrow\frac{a+1}{1+b^2}\ge a+1-\frac{ab+b}{2}\left(1\right)\)
Tương tự ta có:
\(\frac{b+1}{1+c^2}\ge b+1-\frac{bc+c}{2}\left(2\right)\)
\(\frac{c+1}{1+a^2}\ge c+1-\frac{ca+a}{2}\left(3\right)\)
Cộng vế theo vế (1), (2) và (3) ta được:
\(\frac{a+1}{1+b^2}+\frac{b+1}{1+c^2}+\frac{c+1}{1+a^2}\ge3+\frac{a+b+c-ab-bc-ca}{2}\left(^∗\right)\)
Mặt khác : \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2=9\)
\(\Rightarrow\frac{a+b+c-ab-bc-ca}{2}\ge0\)
Nên \(\left(^∗\right)\) \(\Leftrightarrow\frac{a+1}{1+b^2}+\frac{b+1}{1+c^2}+\frac{c+1}{1+a^2}\ge3\left(đpcm\right)\)
Dấu " = " xảy ra khi và chỉ khi \(a=b=c=1\)
Chúc bạn học tốt !!!
bài 1 áp dụng bất đẳng thức Cô-si swatch ta có:
\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ac}\)=1
dấu bằng xảy ra khi nào bạn tự tìm nh