M= \(\dfrac{1}{1+2+3}\)+\(\dfrac{1}{1+2+3+4}\)+...+\(\dfrac{1}{1+2+3+...+59}\) CMR M<\(\dfrac{2}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+...+\dfrac{1}{1+2+3+...+59}\\ =\dfrac{1}{\dfrac{3\cdot4}{2}}+\dfrac{1}{\dfrac{4\cdot5}{2}}+...+\dfrac{1}{\dfrac{59\cdot60}{2}}\\ =\dfrac{2}{3\cdot4}+\dfrac{2}{4\cdot5}+...+\dfrac{2}{59\cdot60}\\ =2\left(\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{59\cdot60}\right)\\ =2\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{59}-\dfrac{1}{60}\right)\\ =2\cdot\dfrac{19}{60}\\ =\dfrac{38}{60}< \dfrac{40}{60}=\dfrac{2}{3}\)
\(\dfrac{1}{1+2+3+...+n}=\dfrac{1}{\dfrac{n\left(n+1\right)}{2}}=\dfrac{2}{n\left(n+1\right)}=\dfrac{2}{n}-\dfrac{2}{n+1}\)
Do đó:
\(\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+...+\dfrac{1}{1+2+...+59}=\dfrac{2}{3}-\dfrac{2}{4}+\dfrac{2}{4}-\dfrac{2}{5}+...+\dfrac{2}{59}-\dfrac{2}{60}\)
\(=\dfrac{2}{3}-\dfrac{2}{60}< \dfrac{2}{3}\) (đpcm)
Ta có: \(\dfrac{n^3-1}{n^3+1}=\dfrac{\left(n-1\right)\left(n^2+n+1\right)}{\left(n+1\right)\left(n^2-n+1\right)}=\dfrac{\left(n-1\right)[\left(n+0,5\right)^2+0,75]}{\left(n+1\right)[\left(n-0,5\right)^2+0,75]}\)
Thay vào M ta có:
\(M=\dfrac{2,5^2+0.75}{3.\left(1,5^2+0,75\right)}.\dfrac{2.\left(3,5^2+0,75\right)}{4.\left(2,5^2+0,75\right)}...\dfrac{99[\left(100,5\right)^2+0,75]}{101.[\left(99,5\right)^2+0,75}\)
\(=\dfrac{1.2.3...99}{3.4.5...101}.\dfrac{\left(2,5^2+0,75\right).\left(3,5^2+0,75\right)...[\left(100,5\right)^2+0,75]}{\left(1,5^2+0,75\right).\left(2,5^2+0,75\right)...[\left(99,5\right)^2+0,75]}\)\(=\dfrac{1.2}{100.\left(101\right)}.\dfrac{\left(100,5\right)^2+0,75}{1,5^2+0,75}=\dfrac{2}{3}.\dfrac{\left(100^2+100+1\right)}{3.100.101}>\dfrac{2}{3}\left(đpcm\right)\)
A = \(\dfrac{1}{1+2+3}\) + \(\dfrac{1}{1+2+3+4}\) +......+\(\dfrac{1}{1+2+3+4+....+59}\)
A = \(\dfrac{1}{(3+1).3:2}\) + \(\dfrac{1}{(4+1).4:2}\)+......+\(\dfrac{1}{(59+1).59:2}\)
A = \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) +.....+ \(\dfrac{2}{59.60}\)
A = 2.(\(\dfrac{1}{3.4}+\dfrac{1}{4.5}+....+\dfrac{1}{59.60}\))
A = 2. ( \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) +....+ \(\dfrac{1}{59}\) - \(\dfrac{1}{60}\))
A = 2. ( \(\dfrac{1}{3}\) - \(\dfrac{1}{60}\))
A = 2. \(\dfrac{19}{60}\)
A = \(\dfrac{19}{30}\)
cau 1
de a dat gia tri lon nhat suy ra5a-17/4a-23 lon nhat
suy ra 4a-23 phai nho nhat khac 0 va la so nguyen duong
suy ra 4a-23=1
suy ra 4a=1+23=24
suy ra a=24 chia 4=6
vay de a nho nhat thi a=6
Xét \(\dfrac{a}{a^2+1}+\dfrac{3\left(a-2\right)}{25}-\dfrac{2}{5}=\dfrac{a}{a^2+1}+\dfrac{3a-16}{25}=\dfrac{\left(3a-4\right)\left(a-2\right)^2}{25\left(a^2+1\right)}\ge0\)
\(\Rightarrow\dfrac{a}{a^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(a-2\right)}{25}\)
CMTT \(\Rightarrow\left\{{}\begin{matrix}\dfrac{b}{b^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(b-2\right)}{25}\\\dfrac{c}{c^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(c-2\right)}{25}\end{matrix}\right.\)
Cộng vế theo vế:
\(\Rightarrow VT\ge\dfrac{2}{5}+\dfrac{2}{5}+\dfrac{2}{5}-\dfrac{3\left(a-2\right)+3\left(b-2\right)+3\left(c-2\right)}{25}\ge\dfrac{6}{5}-\dfrac{3\left(a+b+c-6\right)}{25}=\dfrac{6}{5}\)
Dấu \("="\Leftrightarrow a=b=c=2\)
Ta có \(M=\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+...+\dfrac{1}{1+2+3+...+59}\)
= \(\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{59\cdot60}\)
= \(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{59}-\dfrac{1}{60}\)
= \(\dfrac{1}{3}-\dfrac{1}{60}=\dfrac{19}{60}< \dfrac{40}{60}=\dfrac{2}{3}\)
Vậy M < \(\dfrac{2}{3}\)
Ta có: