K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2018

A(2010)=x^2010 - 2009x^2009 - 2009x^2008 - 2009x^2007 -...- 2009x + 1

ta có: 2010-1=2009 --> x-1=2009

thay x-1=2009 vào đa thức A(2010) ta được:

A(2010)=x^2010 - x^2009(x-1) - x^2008(x-1) - x^2007(x-1) -...- x(x-1) + 1

=x^2010 - x^2010 + x^2009 - x^2009 + x^2008 - x^2008 + x^2007 -...- x^2 + x + 1 

= x + 1 

thay x=2010 vao x+1 ta được:

2010+1=2011

vậy A(2010)=2011

 

4 tháng 4 2018

Mọi người giúp mik nha  ^_^

19 tháng 2 2020

Ta có: \(P\left(x\right)+Q\left(x\right)=2\left(1+x^2+x^4+...+x^{2010}\right)\)

\(\Rightarrow P\left(\frac{1}{2}\right)+Q\left(\frac{1}{2}\right)=2\left(1+\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{2010}}\right)\)

Đặt \(K=\left(1+\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{2010}}\right)\)

\(\Rightarrow\frac{1}{2^2}K=\left(\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{2012}}\right)\)

\(\Rightarrow K-\frac{1}{2^2}K=1-\frac{1}{2^{2012}}\)

\(\Rightarrow\frac{3}{4}K=1-\frac{1}{2^{2012}}\)

\(\Rightarrow K=\frac{4}{3}-\frac{1}{3.2^{2010}}\)

Lúc đó \(P\left(\frac{1}{2}\right)+Q\left(\frac{1}{2}\right)=2\left(\frac{4}{3}-\frac{1}{3.2^{2010}}\right)=\frac{8}{3}-\frac{1}{3.2^{2009}}\)

\(=\frac{2^{2012}-1}{3.2^{2009}}\)

Ta thấy \(2^{2012}-1=2^{4.503}-1=\overline{...6}-1=\overline{...5}⋮5\)

Mà 3 . 22009 không chia hết cho 5 nên khi ta rút gọn \(\frac{2^{2012}-1}{3.2^{2009}}\)đến dạng tối giản thì a vẫn chia hết cho 5.

Vậy \(a⋮5\left(đpcm\right)\)

17 tháng 1 2022

tui ko biet

25 tháng 4 2017

1)Ta có: 2009 = 2010 - 1 = x - 1(do x = 2010).

Thay 2009 = x - 1 vào đa thức A(x), ta có:

A(2010)=x^2010 - (x-1).x^2009 - (x-1).x^2008 - ... - (x-1).x +1

           =x^2010 - x^2010 + x^2009 - x^2008 +x^2008 - ... - x^2 + x +1

           =x+1=2010 + 1 =2011.

Vậy giá trị của đa thức A(x) tại x =2010 là 2011

26 tháng 2 2020

bạn Nguyễn Quang Bách ơi! bạn thiếu x^2009-x^2009