Cho 2 đa thức :
P(x)=x+1+x^2+x^3+...+x^2009+x^2010 và Q(x)=1-x+x^2-x^3+x^4-...-x^2009+x^2010
Giá trị của biểu thức P(1/2)+Q(1/2) có dạng biểu diễn hữu tỉ là a/b ; a,b là 2 số nguyên tố cùng nhau .
Chứng minh a chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(P\left(x\right)+Q\left(x\right)=2\left(1+x^2+x^4+...+x^{2010}\right)\)
\(\Rightarrow P\left(\frac{1}{2}\right)+Q\left(\frac{1}{2}\right)=2\left(1+\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{2010}}\right)\)
Đặt \(K=\left(1+\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{2010}}\right)\)
\(\Rightarrow\frac{1}{2^2}K=\left(\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{2012}}\right)\)
\(\Rightarrow K-\frac{1}{2^2}K=1-\frac{1}{2^{2012}}\)
\(\Rightarrow\frac{3}{4}K=1-\frac{1}{2^{2012}}\)
\(\Rightarrow K=\frac{4}{3}-\frac{1}{3.2^{2010}}\)
Lúc đó \(P\left(\frac{1}{2}\right)+Q\left(\frac{1}{2}\right)=2\left(\frac{4}{3}-\frac{1}{3.2^{2010}}\right)=\frac{8}{3}-\frac{1}{3.2^{2009}}\)
\(=\frac{2^{2012}-1}{3.2^{2009}}\)
Ta thấy \(2^{2012}-1=2^{4.503}-1=\overline{...6}-1=\overline{...5}⋮5\)
Mà 3 . 22009 không chia hết cho 5 nên khi ta rút gọn \(\frac{2^{2012}-1}{3.2^{2009}}\)đến dạng tối giản thì a vẫn chia hết cho 5.
Vậy \(a⋮5\left(đpcm\right)\)
1)Ta có: 2009 = 2010 - 1 = x - 1(do x = 2010).
Thay 2009 = x - 1 vào đa thức A(x), ta có:
A(2010)=x^2010 - (x-1).x^2009 - (x-1).x^2008 - ... - (x-1).x +1
=x^2010 - x^2010 + x^2009 - x^2008 +x^2008 - ... - x^2 + x +1
=x+1=2010 + 1 =2011.
Vậy giá trị của đa thức A(x) tại x =2010 là 2011
A(2010)=x^2010 - 2009x^2009 - 2009x^2008 - 2009x^2007 -...- 2009x + 1
ta có: 2010-1=2009 --> x-1=2009
thay x-1=2009 vào đa thức A(2010) ta được:
A(2010)=x^2010 - x^2009(x-1) - x^2008(x-1) - x^2007(x-1) -...- x(x-1) + 1
=x^2010 - x^2010 + x^2009 - x^2009 + x^2008 - x^2008 + x^2007 -...- x^2 + x + 1
= x + 1
thay x=2010 vao x+1 ta được:
2010+1=2011
vậy A(2010)=2011