K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔCIO vuông tại Ivà ΔCHO vuông tại H có

CO chung

góc ICO=góc HCO

=>ΔCIO=ΔCHO

=>CI=CH

=>ΔCIH cân tại C

2:

Kẻ AE//BC, E thuộc IH

=>góc AEH=góc HIC=góc IHC=góc AHE

=>ΔAHE cân tại A

=>AE=AH=IK

Xét ΔAEM và ΔKIM có

góc MAE=góc MIK

AE=IK

góc AME=góc KMI

=>ΔAEM=ΔKIM

=>AM=KM

=>M là trung điểm của AK

c: Kẻ OD vuông góc AB

Xét ΔAOD vuông tại D và ΔAOH vuông tại H có

AO chung

góc OAD=góc OAH

=>ΔAOD=ΔAOH

=>AD=AH=IK

Xet ΔBOD và ΔBOI có

góc BDO=góc BIO

BO chung

góc DBO=góc IBO

=>ΔBDO=ΔBIO

=>BD=BI

BK=BI+IK=BD+AD=BA

=>ΔBKA cân tại B

=>BO vuông góc AK

Xét ΔAHO và ΔOIK có

AH=IK

OH=OI

góc AHO=góc OIK=90 độ

=>ΔAHO=ΔKIO

=>OA=OK

=>ΔOAK cân tại O

mà M là trung điểm của AK

nên OM vuông góc AK

=>B,O,M thẳng hàng

DD
9 tháng 6 2021

d) Dễ thấy \(E\)là trực tâm của tam giác \(ACE\)(do là giao của hai đường cao \(DK,CH\)). 

suy ra \(AE\perp CD\).

Để chứng minh \(BM//CD\)ta sẽ chứng minh \(AE\perp BM\).

Ta có: 

\(\widehat{CAH}=\widehat{CBA}\)(vì cùng phụ với góc \(\widehat{ACB}\))

suy ra \(\widehat{CAE}=\widehat{ABM}\)

mà \(\widehat{CAE}+\widehat{EAB}=\widehat{CAB}=90^o\Rightarrow\widehat{ABM}+\widehat{EAB}=90^o\Rightarrow\widehat{AMB}=90^o\)

do đó \(BM\perp AE\).

Từ đây ta có đpcm. 

a: Xét ΔAFH vuông tại F và ΔADB vuông tại D có

góc FAH chung

=>ΔAFH đồng dạng ΔADB

b: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc AFE=góc ACB

mà góc FAE chung

nên ΔAFE đồng dạng với ΔACB

góc FEH=góc BAD

góc DEH=góc FCB

mà góc BAD=góc FCB

nên góc FEH=góc DEH

=>EH là phân giác của góc FED

16 tháng 3 2022

có điểm kìa

K trả lời thì thôi đừng nói như vậy người khác k hiểu

8 tháng 1 2021

What the fuck men