K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2023

A(x) + B(x) = x4 - 3x + 3 + x4 - x + 128

A(x) +B(x) = (x4 + x4) - (3x+x) +( 3 +128)

A(x) + B(x) = 2x4 - 4x + 131

A(x) -B(x) = x4 - 3x + 3 - (x4 - x + 128)

A(x) -B(x) = x4 - 3x + 3 - x4 + x - 128

A(x) - B(x) = (x - x4) - (3x - x)  - ( 128 - 3)

A(x) - B(x) = 0 - 2x - 125

A(x) - B(x) = -2x - 125

 

14 tháng 4 2023

 A(x) =  x4 + 3 - 3x

   A(x) = x4 - 3x + 3

 B(x) = 53 + 3 - 3x2 + x4 - 2x + 3x2 + x

   B(x) = (125 + 3) - ( 3x2 - 3x2) + x4 -( 2x - x)

   B(x) = 128 - 0 + x4 - x

B(x) = x4 - x + 128 

b, A(2) = 24 - 3 \(\times\) 2 + 3

   A(2) = 16 - 6 + 3

  A(2) = 10 + 3

  A(2) = 13

 

 

Thu gọn và sắp xếp:

P(x) = x² + 5x^4 - 3x³ + x² + 4x^4 + 3x³ - x + 5

       = (5x^4 + 4x^4) + (- 3x³+ 3x³) + (x² + x²) - x + 5

       = 9x^4 + 2x² - x +5

Q(x)= x - 5x³ - x² - x^4 + 4x³ - x² - 3x - 1

       = -x^4 + (- 5x³ + 4x³) + (- x² - x²) + (x - 3x) - 1 

       = -x^4 - x³ -2x² - 2x - 1 

mik mới chỉ làm đc vz thui ak

14 tháng 8 2020

a, Ta có : \(P\left(x\right)=x^2+5x^4-3x^3+x^2+4x^4+3x^3-x+5\)

\(=2x^2+9x^4-x+5\)

\(Q\left(x\right)=x-5x^3-x^2-x^4+4x^3-x^2+3x-1\)

\(=4x-x^3-2x^2-1-x^4\)

Sắp xếp : 

\(P\left(x\right)=9x^4+2x^2-x+5\)

\(Q\left(x\right)=-x^4-x^3-2x^2+4x-1\)

b, \(M\left(x\right)=9x^4+2x^2-x+5-x^4-x^3-2x^2+4x-1\)

\(=8x^4+3x+4\)Bậc : 4 

c, \(N\left(x\right)=18x^4+4x^2-2x+10+x^4+x^3+2x^2-4x+1\)

\(=19x^4+6x^2-6x+11\)

14 tháng 6 2020

................ =234567

`7,`

`a,`

\(M(x) = - 5x ^ 4 + 3x ^ 5 + x(x ^ 2 + 5) + 14x ^ 4 - 6x ^ 5 - x ^ 3 + x - 1 \)

\(M(x)=-5x^4+3x^5+x^3+5x+14x^4-6x^5-x^3+x-1\)

`M(x)=(3x^5-6x^5)+(-5x^4+14x^4)+(x^3-x^3)+(5x+x)-1`

`M(x)=-3x^5+9x^4+6x-1`

 

\(N(x)=x ^ 4 (x - 5) - 3x ^ 3 + 3x + 2x ^ 5 - 4x ^ 4 + 3x ^ 3 - 5 \)

\(N(x)=x^5-5x^4-3x^3+3x+2x^5-4x^4+3x^3-5\)

`N(x)=(x^5+2x^5)+(-5x^4-4x^4)+(-3x^3+3x^3)+3x-5`

`N(x)=3x^5-9x^4+3x-5`

`b,`

`H(x)=M(x)+N(x)`

\(H(x)=(-3x^5+9x^4+6x-1)+(3x^5-9x^4+3x-5) \)

`H(x)=-3x^5+9x^4+6x-1+3x^5-9x^4+3x-5`

`H(x)=(-3x^5+3x^5)+(9x^4-9x^4)+(6x+3x)+(-1-5)`

`H(x)=9x-6`

 

`G(x)=M(x)-N(x)`

\(G(x)=(-3x^5+9x^4+6x-1)-(3x^5-9x^4+3x-5)\)

`G(x)=-3x^5+9x^4+6x-1-3x^5+9x^4-3x+5`

`G(x)=(-3x^5-3x^5)+(9x^4+9x^4)+(6x-3x)+(-1+5)`

`G(x)=-6x^5+18x^4+3x+4`

`c,`

`H(x)=9x-6`

Hệ số cao nhất của đa thức: `9`

Hệ số tự do: `-6`

`G(x)=-6x^5+18x^4+3x+4`

Hệ số cao nhất của đa thức: `-6`

Hệ số tự do: `4`

`d,`

`H(-1)=9*(-1)-6=-9-6=-15`

`H(1)=9*1-6=9-6=3`

`G(1)=-6*1^5+18*1^4+3*1+4`

`G(1)=-6+18+3+4=12+3+4=15+4=19`

`G(0)=-6*0^5+18*0^4+3*0+4=4`

`H(-3/2)=9*(-3/2)-6=-27/2-6=-39/2`

`e,`

Đặt `H(x)=9x-6=0`

`-> 9x=0+6`

`-> 9x=6`

`-> x=6 \div 9`

`-> x=2/3`

Vậy, nghiệm của đa thức là `x=2/3.`

2 tháng 5 2022

a)\(P\left(x\right)=M\left(x\right)+N\left(x\right)\)

\(P\left(x\right)=x^4+3x-\dfrac{1}{9}-x+3x^4+2x^2+8x-2x^3+2x^3+\dfrac{2}{3}+4x-4x^4-\dfrac{1}{3}\)

\(P\left(x\right)=2x^2+\dfrac{2}{9}+14x\)

 

 

 

2 tháng 5 2022

rối lắm luôn

AH
Akai Haruma
Giáo viên
14 tháng 4 2023

Lời giải:

a. 
$f(x) =-2x^3+x-1+4x^2-5x+3x^3=(-2x^3+3x^3)+4x^2+(-5x+x)-1$

$=x^3+4x^2-4x-1$

b. 

Hệ số tự do: $-1$

Bậc $f(x)$: 3

a: A(x)=3x^5+x^4-x^2+x

B(x)=3x^5-x^4+x^2+x-2

b: M(x)=B(x)-A(x)

=3x^5-x^4+x^2+x-2-3x^5-x^4+x^2-x

=-2x^4+2x^2+2x-2

 

14 tháng 4 2022

a)\(P\left(x\right)=x^4+3\)

b)\(Q\left(x\right)=-x^3-2x^2-14x-1\)