K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2017

Hệ thức lượng trong tam giác vuông

7 tháng 8 2015

Tam giác vuông thường hay vuông cân vậy?

7 tháng 8 2015

Gọi 1  cạnh góc vuông  là x ( cm)  ( x > 0)

Cạnh huyền là x + 1 ( cm)

Áp dụng ĐL Pi ta go => cạnh góc vuông còn lại là \(\sqrt{\left(x+1\right)^2-x^2}=\sqrt{\left(x+1+x\right).\left(x+1-x\right)}=\sqrt{2x+1}\) (cm)

Theo bài cho ta có pt:  x + \(\sqrt{2x+1}\) = x + 1 + 4 

=> \(\sqrt{2x+1}\) = 5 => 2x + 1 = 25 => x = 12 ( cm)

Vậy 1 cạnh góc vuuong là 12 cm ; cạnh góc vuông còn lại là \(\sqrt{2.12+1}=5\) cm; 

20 tháng 9 2017

câu 2

Gọi tgv trên là tg ABC vuông tại A, AB/AC = 3/4 và AC = 125 

Ta có: AB/AC = 3/4 => AB^2/AC^2 = 9/16 => 16AB^2 - 9AC^2 = 0 (*) 
Ngoài ra: AC^2 = BC^2 - AB^2 = (125)^2 - AB^2 = 15625 - AB^2(**) 
Thay (**) vào (*) ta có: 16AB^2 - 9(15625 - AB^2) = 0 => 25AB^2 - 140625 = 0 
=> AB^2 = 5605. Vì AB > 0 => AB = 75 
AC = 4/3 x AC => AC = 100 

Gọi AH là là đường cao của tgv ABC, ta có BH, CH là hình chiếu của AB và AC. 
Ta dễ dàng thấy tgv ABC, tgv BHA và tgv AHC là 3 tg đồng dạng, Ta có: 
* BH/AB = AB/BC => BH = AB^2/BC = 75^2/125 = 45 
* CH/AC = AC/BC => CH = AC^2/BC = 100^2/125 = 80

20 tháng 9 2017

(hình bạn tự vẽ nhé)
Gọi hai hình chiếu của hai cạnh góc vuông trên cạnh huyền là x và y
Ta có : x.y = 2^2 = 4 (tích hai hình chiều bằng bình phương đường cao) (1)
và x + y = 5 => x = 5 - y
Thay vào (1) : (5 - y)y = 4 <=> y^2 - 5y + 4 = 0
<=> (x - 4)(x - 1) = 0 <=> x = 4 hoặc x = 1
=> y = 1 hoặc y = 4
Từ đó suy ra cạnh nhỏ nhất của tam giác là cạnh có hình chiếu bằng 1.
=> (cạnh gv nhỏ nhất)^2 = (hình chiếu nhỏ nhất).(cạnh huyền) = 1.5
=> cạnh góc vuông nhỏ nhất = căn 5

9 tháng 9 2016

Bài 1:

3 4 x y z

Áp dụng đl pytago ta có:

\(\left(y+z\right)^2=3^2+4^2=9+16=25\)

=> y + z = 5

Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền ta có:

\(3^2=y\left(y+z\right)=5y\)

=>\(y=\frac{3^2}{5}=1,8\)

Có: y + z =5

=>z=5-y=5-1,8=3,2

Áp dụng hên thức liên quan tới đường cao:

\(x^2=y\cdot z=1,8\cdot3,2=\frac{144}{25}\)

=>\(x=\frac{12}{5}\)

2 tháng 9 2019

Bài 2:

B A C H 1cm 2cm x y

Ta có: △ABC vuông tại A và có đg cao AH

AB2 = BH.BC ( hệ thức lượng )

⇒ x2 = 1 . 3

⇒ x = \(\sqrt{1.3}=\sqrt{3}cm\)

AC2 = CH.BC

⇒ y2 = 2 . 3

⇒ y = \(\sqrt{6}\) cm

25 tháng 11 2020

- Giả sử cạnh huyền BC > AB 1 cm , ta có :

BC - AB = 1

( AB + AC ) - BC = 4 cm

=> AC = 5cm

Ta có : \(\hept{\begin{cases}BC-AB=1\\BC^2=AB^2+AC^2\end{cases}}\)( đlí Py - ta - go )

BC - AB = 1 => BC = AB + 1

( AB + 1 )2 = AB2 + AC2

AB2 + 2AB + 1 = AB2 + AC2

          2AB + 1 = AC2

          2AB = AC2 - 1 = 52 - 1 = 24

\(\Rightarrow AB=\frac{24}{2}=12\Rightarrow BC=12+1=13\)

Vậy : AB = 12cm

         AC = 5cm

         BC = 13cm