gieo ngẫu nhiên một đồng xu 3 lần liên tiếp. Tính xác suất của các biến cố sau: A:" Ba lần gieo xuất hiện như nhau" B:" mặt ngửa xuất hiện đúng một lần" C: "lần thứ hai xuất hiện mặt sấp" D:"mặt ngửa xuất hiện ít nhất một lần"
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Không gian mẫu có dạng
Ω = {SSS, SSN, SNS, NSS, SNN, NSN, NNS, NNN}
b)
A = {SSS, SNS, SSN, SNN};
B = {SSS, NNN};
C = {SSN, SNS, NSS};
D = {NN N } = Ω \ {NNN}.
b. Biến cố C: “ Có ít nhất hai đồng tiền xuất hiện mặt ngửa” tức là có thể có hai hoặc ba đồng tiền xuất hiện mặt ngửa. Vì vậy chọn phương án B
Chọn A
Ghi nhớ:
-Phép thử “gieo hai đồng tiền phân biệt” thì hai kết quả SN, NS của phép thử là khác nhau.
-Phép thử “gieo n đồng xu phân biệt” thì không gian mẫu có 2 n phần tử, với n ∈ ℕ * .
1.Gieo 2 đồng xu 1 lần,xác suất cả hai đều ngửa là 1/2*1/4 = 1/8
2.2 lần đều ngửa : 1/2*1/4*1/2*1/4 = 1/64
Kết quả của 5 lần gieo mà mặt N xuất hiện đúng một lần:
Kết quả của 5 lần gieo mà mặt N xuất hiện đúng hai lần:
Số kết quả của 5 lần gieo mà số lần mặt S xuất hiện nhiều hơn số lần mặt N là:
Chọn C
a: n(A)=2
n(omega)=2*2*2=8
=>P(A)=2/8=1/4
b: B={(NSS); (SNS); (SSN)}
=>n(B)=3
=>P(B)=3/8
c: C={NSS; NSN; SSN; SSS}
=>n(C)=4
=>P(C)=4/8=1/2
d: D={NSN; NNS; NNN; SNN; NSS; SNS; SSN}
=>n(D)=6
=>P(D)=6/8=3/4