Bài 4: Cho đường tròn (O) dây BC cố định không đi qua tâm O. Trên cung lớn BC lấy điểm A sao cho AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: góc MIC+góc MEC=180 độ
=>MICE nội tiếp
2: Xét ΔMCQ và ΔMAC có
góc MCQ=góc MAC
góc CMQ chung
=>ΔMCQ đồng dạng với ΔMAC
=>MC^2=MQ*MA
1: góc MIC=góc MEC=90 độ
=>MIEC nội tiếp
2: Xet ΔMCQ và ΔMAC có
góc MCQ=góc MAC
góc CMQ chung
=>ΔMCQ đồng dạng với ΔMAC
=>MC/MA=MQ/MC
=>MC^2=MQ*MA
a: Xét ΔAPE và ΔACP có
góc APE=góc ACP
góc PAE chung
=>ΔAPE đồng dạng với ΔACP
=>AP^2=AE*AC=AN^2
Xét ΔAND và ΔABN có
góc AND=góc ABN
góc NAD chung
=>ΔAND đồng dạng với ΔABN
=>AD*AB=AN^2
=>AD*AB=AE*AC
=>AD/AC=AE/ABB
=>ΔADE đồng dạng vơi ΔACB
=>góc ADE=góc ACB
b: góc ADE=góc ACB
=>góc BDE+góc BCE=180 độ
=>BDEC nội tiếp
a: Xét tứ giác ANHM có
\(\widehat{ANH}+\widehat{AMH}=180^0\)
Do đó: ANHM là tứ giác nội tiếp
b: Xét ΔBNH vuông tại N và ΔBMA vuông tại M có
\(\widehat{NBH}\) chung
Do đó: ΔBNH∼ΔBMA
Suy ra: BN/BM=BH/BA
hay \(BN\cdot BA=BH\cdot BM\)
Xét ΔCMH vuông tại M và ΔCNA vuông tại N có
\(\widehat{MCH}\) chung
Do đó: ΔCMH∼ΔCNA
Suy ra: CM/CN=CH/CA
hay \(CM\cdot CA=CH\cdot CN\)
\(BN\cdot BA+CM\cdot CA=BM\cdot BM+CH\cdot CN=BC^2\)
a) Bổ đề: Xét tam giác ABC cân tại A, một điểm M bất kì sao cho ^AMB = ^AMC. Khi đó MB = MC.
Bổ đề chứng minh rất đơn giản, không trình bày ở đây.
Áp dụng vào bài toán: Vì E là điểm chính giữa (BC nên EB = EC = ED => \(\Delta\)BED cân tại E
Ta có ^BAE = ^CAE (2 góc nội tiếp chắn hai cung bằng nhau) hay ^BAE = ^DAE
Áp dụng bổ đề vào \(\Delta\)BED ta được AB = AD. Khi đó AE là trung trực của BD => AE vuông góc BD
Lại có \(\Delta\)BAD ~ \(\Delta\)CFD (g.g). Mà AB = AD nên FD =FC. Từ đó EF vuông góc DC
Xét \(\Delta\)AEF có FD vuông góc AE (cmt), AD vuông góc EF (cmt) => D là trực tâm \(\Delta\)AEF (đpcm).
b) Gọi DN cắt EC tại I. Ta dễ thấy ^MDI = ^MDN = ^MBN = ^MBC = ^MEC = ^MEI
Suy ra bốn điểm D,E,M,I cùng thuộc một đường tròn => ^EMD = ^EID = 900
Nếu ta gọi MD cắt cung lớn BC của (O) tại S thì ^EMS chắn nửa (O) hay ES là đường kính của (O)
Mà E là điểm chính giữa cung nhỏ BC nên S là điểm chính giữa cung lớn BC
Do đó S là điểm cố định (Vì B,C cố định). Vậy MD luôn đi qua S cố định (đpcm).
a: góc AIC=góc AHC=90 độ
=>AIHC nội tiếp
b: Xét ΔABD và ΔAEB có
góc ABD=góc AEB
góc BAD chung
=>ΔABD đồng dạng với ΔAEB
=>AB^2=AD*AE
b) \(\widehat{NAB}=\widehat{AFE}=\widehat{ACB}\) nên NA là tiếp tuyến của (O).
Do O, N nằm trên đường trung trực của AB nên A, B đối xứng với nhau qua ON.
Từ đó NB là tiếp tuyến của (O).
c) Do NA là tiếp tuyến của (O) nên \(\Delta NAL\sim\Delta NKA(g.g)\)
\(\Rightarrow\dfrac{NA}{NK}=\dfrac{AL}{KA}=\dfrac{NL}{NA}\Rightarrow\left(\dfrac{AL}{KA}\right)^2=\dfrac{NA}{NK}.\dfrac{NL}{NA}=\dfrac{NL}{NK}\).
Tương tự do NB là tiếp tuyến của (O) nên \(\left(\dfrac{BL}{KB}\right)^2=\dfrac{NL}{NK}\Rightarrow\left(\dfrac{AL}{KA}\right)^2=\left(\dfrac{BL}{KB}\right)^2\Rightarrow\dfrac{AL}{KA}=\dfrac{BL}{KB}\Rightarrow\dfrac{AL}{BL}=\dfrac{KA}{KB}=\dfrac{2R}{KB}\).
Từ đó \(\dfrac{BK.AL}{BL}=2R\) không đổi \(\).
Sửa lại đề là đường tròn (HDS) đi qua một điểm cố định.
Ta có \(\widehat{ASE}=\widehat{EAS}=\widehat{OCA}\) nên tứ giác OECS nội tiếp. Từ đó \(AO.AS=AE.AC=AH.AD\). Suy ra tứ giác OHDS nội tiếp nên đường tròn ngoại tiếp tam giác HDS đi qua O cố định