K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2015

chtt

Ta có: 

A=92013+1/92014+1

9A=92014+9/92014+1

    =(92014+1/92014+1)+(8/92014+1)

    =1+8/92014+1

B=92014+1/92015+1

9B=92015+9/92015+1

    =(92015+1/92015+1)+(8/92015+1)

    =1+8/92015+1

Vì 8/92014+1 > 8/92015+1 nên A>B

**** bạn

AH
Akai Haruma
Giáo viên
8 tháng 5 2022

Lời giải:
\(9B=\frac{9^{2019}+9}{9^{2019}+1}=1+\frac{8}{9^{2019}+1}> 1+\frac{8}{9^{2020}+1}=\frac{9^{2020}+9}{9^{2020}+1}=9A\)

$\Rightarrow B>A$

11 tháng 8 2017

1 và 1/4 + 1/9 +.....+1/1000

Như vậy ta có:

1/4 + 1/9 +....+1/1000 = 1/....

Cho nên =>    1 > 1/4 +1/9 +....+1/1000

10 tháng 7 2021

1 VÀ 1/4 + 1/9 + ..... +/1000

NHƯ VẬY TA CÓ:

1/4 + 1/9 +... +/1000 = 1/...

CHO NÊN => 1/4 + 1/9 +.... +1000

Ta có: \(A=\dfrac{3^{10}+1}{3^9+1}\)

\(\Leftrightarrow A=\dfrac{3^{10}+3-2}{3^9+1}\)

hay \(A=3-\dfrac{2}{3^9+1}\)

Ta có: \(B=\dfrac{3^9+1}{3^8+1}\)

\(\Leftrightarrow B=\dfrac{3^9+3-2}{3^8+1}\)

hay \(B=3-\dfrac{2}{3^8+1}\)

Ta có: \(3^9+1>3^8+1\)

\(\Leftrightarrow\dfrac{2}{3^9+1}< \dfrac{2}{3^8+1}\)

\(\Leftrightarrow-\dfrac{2}{3^9+1}>-\dfrac{2}{3^8+1}\)

\(\Leftrightarrow-\dfrac{2}{3^9+1}+3>-\dfrac{2}{3^8+1}+3\)

hay A>B