K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

SHTQ là: \(C^k_5\cdot\left(x^3\right)^{5-k}\cdot\left(\dfrac{1}{x}\right)^k=C^k_5\cdot x^{15-4k}\)

Số hạng chứa x^3 tương ứng với 15-4k=3

=>4k=12

=>k=3

=>Hệ số là \(C^3_5=10\)

10 tháng 12 2020

Cái chỗ vế phải biểu thức nghĩa là gì thế bạn?

10 tháng 12 2020

Chắc là thế này \(3A^{n-2}_n\)

\(gt\Leftrightarrow2.n!-\left(4n+5\right)\left(n-2\right)!=3.\dfrac{n!}{2!}\)

\(\Leftrightarrow\dfrac{1}{2}n!=\left(4n+5\right)\left(n-2\right)!\Leftrightarrow\dfrac{1}{2}n\left(n-1\right)\left(n-2\right)!=\left(4n+5\right)\left(n-2\right)!\)

\(\Leftrightarrow\dfrac{1}{2}n\left(n-1\right)=4n+5\Leftrightarrow n=10\)

\(\left(3x^3-\dfrac{1}{x^2}\right)^{10}=\left(3x^3-x^{-2}\right)^{10}=\sum\limits^{10}_{k=0}C^k_{10}3^{10-k}.x^{3\left(10-k\right)}.\left(-1\right)^k.x^{-2k}\)

\(=\sum\limits^{10}_{k=0}C^k_{10}.\left(-1\right)^k.3^{10-k}.x^{30-5k}\)

=> so hang ko chua x:  \(30-5k=0\Leftrightarrow k=6\)

\(\Rightarrow C^6_{10}.\left(-1\right)^6.3^{10-6}=17010\)

27 tháng 6 2018

Đáp án là B 

Ta có:  x + 2 x 6 = ∑ k = 0 6 C 6 k 2 k x 6 − 3 2 k

Do đó số hạng chứa x 3  trong khai triển ứng với k thỏa mãn: 6 − 3 2 k = 3 ⇔ k = 2   

Hệ số của x 3  trong khai triển là:  C 6 2 2 2 = 60  

5 tháng 4 2019

20 tháng 12 2022

Câu 2:

\(\Leftrightarrow\dfrac{\left(n+2\right)!}{2!\cdot n!}-4\cdot\dfrac{\left(n+1\right)!}{n!\cdot1!}=2\left(n+1\right)\)

\(\Leftrightarrow\dfrac{\left(n+1\right)\left(n+2\right)}{2}-4\cdot\dfrac{n+1}{1}=2\left(n+1\right)\)

\(\Leftrightarrow\left(n+1\right)\left(n+2\right)-8\left(n+1\right)=4\left(n+1\right)\)

=>(n+1)(n+2-8-4)=0

=>n=-1(loại) hoặc n=10

=>\(A=\left(\dfrac{1}{x^4}+x^7\right)^{10}\)

SHTQ là: \(C^k_{10}\cdot\left(\dfrac{1}{x^4}\right)^{10-k}\cdot x^{7k}=C^k_{10}\cdot1\cdot x^{11k-40}\)

Số hạng chứa x^26 tương ứng với 11k-40=26

=>k=6

=>Số hạng cần tìm là: \(210x^{26}\)

26 tháng 4 2023

Ta có: \(x.\left(C^k_n.a^{n-k}.b^k\right)=x.\left(C^k_5.a^{5-k}.b^k\right)=C^k_5.1^{5-k}.2^k.x^k.x\)

\(=C^k_5.2^k.x^{k+1}\)

Mà ta cần tìm số hạng của x5

\(\Rightarrow k+1=5\Leftrightarrow k=4\)

Vậy số hạng của x5 là: \(C^4_5.2^4=80\)

26 tháng 4 2023

Ta nhân thêm ''x'' vào số hạng tổng quát vì có ''x'' là nhân tử chung của mỗi số hạng trong khải triển

13 tháng 12 2019

5 tháng 11 2019

Đáp án A

Công thức khai triển nhị thức New-ton: a + b n = ∑ k = 0 n C n k a k b n − k .

Ta có:

x 3 − 3 x 12 = ∑ k = 0 12 C 12 k x 3 k − 3 x 12 − k = ∑ k = 0 12 C 12 k 1 3 k x k − 3 12 − k 1 x 12 − k

Số hạng chứa x 4  nên ta tìm k sao cho x k

  x 12 − k = x 4 ⇔ x 2 k − 12 = x 4 ⇔ 2 k − 12 = 4 ⇔ k = 8.

Vậy hệ số của số hạng chứa x 4 là: C 12 8 . 1 3 8 . − 3 12 − 8 = C 12 8 3 4 = 55 9

8 tháng 2 2018