tính tổng S=-1/20+-1/30+...+-1/120
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S= \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
S= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 -1/6 +1/6 - 1/7 + 1/7 - 1/8
S= 1/2 - 1/ 8
S= 3/8
S= 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8
= 1/2 - 1/3 + 1/3 - ...+ 1/7 - 1/8
= 1/2 - 1/8
= 3/8
ta có
\(S=\frac{1}{10}+\frac{1}{20}+\frac{1}{35}+\frac{1}{56}+\frac{1}{84}+\frac{1}{120}+\frac{1}{165}+\frac{1}{220}\)
\(=6\left(\frac{1}{3\cdot4\cdot5}+\frac{1}{4\cdot5\cdot6}+\frac{1}{6\cdot7\cdot8}+\frac{1}{8\cdot9\cdot10}+\frac{1}{10\cdot11\cdot12}\right)\)
\(=3\left(\frac{1}{3\cdot4}-\frac{1}{11\cdot12}\right)=\frac{5}{22}\)
\(S=\frac{101}{120}+\frac{1}{2.3}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...\frac{1}{18.19}+\frac{1}{19.20}\right)\)
\(S=\frac{101}{120}+\frac{1}{6}\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{19-18}{18.19}+\frac{20-19}{19.20}\right)\)
\(S=\frac{101}{120}+\frac{1}{6}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)
\(S=\frac{101}{120}+\frac{1}{6}\left(1-\frac{1}{20}\right)=\frac{101}{120}+\frac{19}{120}=\frac{120}{120}=1\)
\(=\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{98\cdot99}\)
\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{98}-\dfrac{1}{99}=\dfrac{1}{3}-\dfrac{1}{99}=\dfrac{32}{99}\)
1/3.4 + 1/4.5 + ...+1/98.99
= 1/3-1/4+1/4-1/5+...+1/98-1/99
= 1/3-1/99= 32/99