K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC
góc A chung

=>ΔADB=ΔAEC

b: góc ABD+góc HBC=góc ABC

góc ACE+gócHCB=góc ACB

mà góc ABD=góc ACE; góc ABC=góc ACB

nên góc HBC=góc HCB

=>ΔHBC cân tạiH

c: Xet ΔBAC có AE/AB=AD/AC

nên ED//BC

`a,`

Xét Tam giác `ABD` và Tam giác `ACE` có:

`AB = AC (\text {Tam giác ABC cân tại A})`

\(\widehat{A} \) \(\text {chung}\)

`=> \text {Tam giác ABD = Tam giác ACE (ch-gn)}`

`b,`

Vì Tam giác `ABD =` Tam giác `ACE (a)`

`-> AD = AE (\text {2 cạnh tương ứng})`

`->`\(\widehat{ABD}=\widehat{ACE} (\text {2 góc tương ứng})\)

Ta có: \(\left\{{}\begin{matrix}AB=AE+BE\\AC=AD+DC\end{matrix}\right.\)

Mà \(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\AD=AE\left(CMT\right)\end{matrix}\right.\)

`-> BE = DC`

Xét Tam giác `HEB` và Tam giác `HDC` có:

\(\widehat{HBE}=\widehat{HCD} (CMT)\)

`BE = DC (CMT)`

\(\widehat{HEB}=\widehat{CDH}=90^0\)

`=> \text {Tam giác HEB = Tam giác HDC}`

`-> HB = HC (\text {2 cạnh tương ứng})`

Xét Tam giác `BHC: HB = HC`

`->` Tam giác `BHC` cân tại `H`

`c,`

Xét Tam giác `AED: AE = AD (CMT)`

`-> \text {Tam giác AED cân tại A}`

`->`\(\widehat{AED}=\widehat{ADE} =\)\(\dfrac{180-\widehat{A}}{2}\)

Tam giác `ABC` cân tại `A:`

`->`\(\widehat{ACB}=\widehat{ACB}=\)\(\dfrac{180-\widehat{A}}{2}\)

`->`\(\widehat{AED}=\widehat{ABC}\) 

Mà `2` góc này nằm ở vị trí đồng vị

`-> \text {ED = BC (đpcm)}.`

loading...

2: góc ABH+góc HBC=góc ABC

góc ACK+góc KCB=góc ACB

mà góc ABC=góc ACB; góc HBC=góc KCB

nên góc ABH=góc ACK

Xét ΔABC có

AM vừa là đường phân giác, vừa là đường trung tuyến

nên ΔABC cân tại A

26 tháng 3 2022

40 độ

4 tháng 10 2017

10 tháng 2 2022

a, ^M = \(\dfrac{180^0-\widehat{A}}{2}\); ^B = \(\dfrac{180^0-\widehat{A}}{2}\)

Xét tam giác AMN có : AM = AN

nên tam giác AMN cân tại A

b, Vì ^M = ^B = (1800 - ^A)/2 

mà 2 góc này ở vị trí đồng vị 

=> MN // BC 

 

12 tháng 8 2016

A B C H K Từ A kẻ đường cao AH vuông góc với BC tại H.

Từ B kẻ đường cao BK vuông góc với AC tại K

Khi đó, ta có BH = HC = 1/2BC = 5 (cm)

\(AH=\sqrt{AC^2-\left(\frac{BC}{2}\right)^2}=13^2-5^2=12\left(cm\right)\)

Dễ thấy hai tam giác HCA và KCB đồng dạng (g.g)

Suy ra \(\frac{HC}{KC}=\frac{AC}{BC}\) hay \(\frac{5}{KC}=\frac{13}{10}\Rightarrow KC=\frac{50}{13}\Rightarrow AK=AC-KC=13-\frac{50}{13}=\frac{119}{13}\left(cm\right)\)

Xét tam giác AKB, ta có : 

\(CosA=\frac{AK}{AC}=\frac{\frac{119}{13}}{13}=\frac{119}{169}\)

12 tháng 8 2016

kẽ đường cao AH,tam giác ABC cân tại A=>AH cũng là trung tuyến của BC=>BH=1/2BC=5cm 
xét tam giác AHB theo DL Pitago ta tính dc AH=12cm 
=>cosBAH=AH/AB=12/13 
=>cosBAC=2*12/13=24/13(vì AH là fân giác góc BAC)