đặt một vật sáng ab có dạng mũi tên cao 2cm vuông góc với trục chính của thấu kính hội tụ và cách thấu kính 16cm thấu kính có tiêu cự là 12cm a, dựng ảnh b, tính khoảng cách từ ảnh đến thấu kính và chiều cao của vật A’B’
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khoảng cách từ ảnh đến thấu kính là:
Áp dụng công thức tính thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow d'=\dfrac{d.f}{d-f}=\dfrac{8.4}{8-4}=8\left(cm\right)\)
Chiều cao của ảnh:
Ta có: \(\dfrac{d}{d'}=\dfrac{h}{h'}\Rightarrow h'=\dfrac{d'.h}{d}=\dfrac{8.2}{8}=2\left(cm\right)\)
Ảnh ảo, cùng chiều và nhỏ hơn vật.
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d'}-\dfrac{1}{d}\Rightarrow\dfrac{1}{12}=\dfrac{1}{d'}-\dfrac{1}{9}\Rightarrow d'=\dfrac{36}{7}cm\)
Độ cao ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{2}{h'}=\dfrac{9}{\dfrac{36}{7}}\Rightarrow h'=\dfrac{8}{7}cm\approx1,14cm\)
Khoảng cách tử ảnh đến thấu kính:
Áp dụng công thức tính thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Leftrightarrow d'=\dfrac{d.f}{d-f}=\dfrac{3.2}{3-2}=6\left(cm\right)\)
Chiều cao của ảnh:
Ta có: \(\dfrac{d}{d'}=\dfrac{h}{h'}\Rightarrow h'=\dfrac{d'.h}{d}=\dfrac{6.2}{3}=4\left(cm\right)\)
a,vì d>f(3cm>2cm) nên vật cho ảnh thật ngược chiều và lớn hơn vật
b,ta có 1/f=1/d+1/d'<=>1/2=1/3+1/d'<=>d'=6cm(f là tiêu cự,d và d' lần lượt là khoảng cách từ vật và ảnh tới thấu kính)=> khoảng cách từ ảnh tới thấu kính tới thấu kính là 6cm
đổi 1m=100cm ta có h/h'=d/d'<=>100/h'=3/6<=>h'=200cm(h và h' lần lượt là chiều cao của vật AB và chiều cao của ảnh A'B')
Vậy độ lớn của ảnh là 200cm
Mình chỉ làm phần tính toán thôi nha, còn phần vẽ thì chắc bạn cũng biết vẽ rồi
Bài Giải
a. Dựng ảnh A'B' của vật qua thấu kính ta thấy:
f < d < 2f nên ảnh A'B' là ảnh thật, ngược chiều với vật AB
b.Áp dụng công thức độ phóng đại của ảnh ta có:
\(\dfrac{AB}{A'B'}=\dfrac{d}{d'}=\dfrac{12}{24}=\dfrac{1}{2}\)
=> A'B' = 2AB =4 (cm)
Áp dụng công thức thấu kính ta có:
\(\dfrac{1}{f}\) = \(\dfrac{1}{d}+\dfrac{1}{d'}\)
=> d' = \(\dfrac{d.f}{d-f}\) = \(\dfrac{12.8}{12-8}\) = 24 (cm)
Ảnh ảo, cùng chiều và nhỏ hơn vật.
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d'}-\dfrac{1}{d}\Rightarrow\dfrac{1}{12}=\dfrac{1}{d'}-\dfrac{1}{8}\Rightarrow d'=4,8cm\)
Chiều cao ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{2}{h'}=\dfrac{8}{4,8}\Rightarrow h'=1,2cm\)
Khoảng cách từ vật đến ảnh:
\(d-d'=8-4,8=3,2cm\)
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{4}=\dfrac{1}{8}+\dfrac{1}{d'}\Rightarrow d'=8cm\)
Chiều cao ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{h}{h'}=\dfrac{8}{8}=1\Rightarrow h=h'\)