Tìm tất cả các giá trị thực của tham số m để phưong trình x^2-4x+3-m=0 có 2 nghiệm phân biệt x1,x2 sao cho 0 nhỏ hơn hoặc bằng x1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khi m=1 thì (1): x^2-2(1-2)x+1^2-5-4=0
=>x^2+2x-8=0
=>(x+4)(x-2)=0
=>x=2 hoặc x=-4
b: Δ=(2m-4)^2-4(m^2-5m-4)
=4m^2-16m+16-4m^2+20m+16
=4m+32
Để pt có hai nghiệm phân biệt thì 4m+32>0
=>m>-8
x1^2+x2^2=-3x1x2-4
=>(x1+x2)^2+x1x2+4=0
=>(2m-4)^2+m^2-5m-4+4=0
=>4m^2-16m+16+m^2-5m=0
=>5m^2-21m+16=0
=>(m-1)(5m-16)=0
=>m=16/5 hoặc m=1
\(\Delta'=\left(m+1\right)^2-\left(m^2+2m\right)=1>0\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=m+1-1=m\\x_2=m+1+1=m+2\end{matrix}\right.\)
\(\left|x_1\right|=3\left|x_2\right|\Leftrightarrow\left|m\right|=3\left|m+2\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}3m+6=-m\\3m+6=m\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-\dfrac{3}{2}\\m=-3\end{matrix}\right.\)
Chị quản lí ơi để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)!
Quá dễ . số cần tìm là 10 . Đúng đấy , bài này mk làm rồi , chắc chắn 100% luôn !!!
Để phương trình 1 có 2 nghiệm phân biệt thì : \(\Delta>0\)
\(\Leftrightarrow\left(-4\right)^2-4\left(3-m\right)>0\\ \Leftrightarrow4+4m>0\\ \Leftrightarrow m>-1\circledast\)
Vì phương trình 1 cso hai nghiệm phân biệt
=> \(x_1=\dfrac{4-\sqrt{4+4m}}{2}\)
Theo bài ra ta có phương trình 1 cso 2 no phân biệt với \(x_1\le0\)
\(\Leftrightarrow\dfrac{4-\sqrt{4+4m}}{2}\le0\)
Mà ta có 2 > 0
\(\Rightarrow4-\sqrt{4+4m}\le0\\ \Leftrightarrow m\ge3\circledast\circledast\)
Từ * và ** thì với giá trị \(m\ge3\) thì bài toán được t/m