cho \(\Delta ABC\)có AB>AC , AD là phân giác của góc A, M là 1 điểm thuộc đoạn thẳng AD. chứng minh : MB-MC < AB-AC
các bạn ơi giúp mk với nhé . bạn k cần kẻ hình cho mk đâu nhé. bạn nào xong nhanh thì mk tick cho nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên cạnh AB lấy lấy điểm N sao cho AN=AC.
=> \(\Delta\)AMC=\(\Delta\)AMN (c.g.c) => MC=MN (2 cạnh tương ứng)
Ta có: AB-AC=AB-AN=NB (Thay AN=AC)
Xét \(\Delta\)MNB: NB>MB-MN (Bất đẳng thức tam giác) , MN=MC => NB>MB-MC
Mà NB=AB-AC => AB-AC>MB-MC hay MB-MC<AB-AC (đpcm)
xét tam giác ABD có
[laTEX]\frac{AB}{sin 90} = \frac{AD}{sin 36} \Rightarrow AD = sin 36. AB[/laTEX]
xét tam giác ABE có
[laTEX]\frac{AB}{sin 54} = \frac{BE}{sin 108} \Rightarrow BE = \frac{sin 108}{sin 54}. AB[/laTEX]
ta có
[laTEX]sin 108 = sin (2.54) = 2sin 54. cos 54 \\ \\ BE = \frac{2sin 54. cos 54 }{sin 54}.AB = 2cos54.AB[/laTEX]
mặt khác
[laTEX]cos 54 = sin 36 \Rightarrow 2AD = BE[/laTEX]
Câu 1:
Vì BD \(\perp\) d nên \(\widehat{BDA}\) = 90o
Ta có:
\(\widehat{BAD}\) + \(\widehat{BAC}\) + \(\widehat{CAE}\) = 180o
=> \(\widehat{BAD}\) + 90o + \(\widehat{CAE}\) = 180o
=> \(\widehat{BAD}\) + \(\widehat{CAE}\) = 90o (1)
Áp dụng tính chất tam giác vuông ta có:
\(\widehat{DBA}\) + \(\widehat{BAD}\) = 90o (2)
Từ (1) và (2) suy ra:
\(\widehat{BAD}\) + \(\widehat{CAE}\) = \(\widehat{DBA}\) + \(\widehat{BAD}\)
=> \(\widehat{CAE}\) = \(\widehat{DBA}\)
Xét \(\Delta\)DBA vuông tại D và \(\Delta\)EAC vuông tại E có:
BA = AC (giả thiết)
\(\widehat{DBA}\) = \(\widehat{EAC}\) (chứng minh trên)
=> \(\Delta\)DBA = \(\Delta\)EAC (cạnh huyền - góc nhọn)
=> DB = EA và DA = EC (2 cặp cạnh tương ứng).
Câu 2: Mk sẽ làm ở đây: /hoidap/question/166568.html