Chứng minh rằng trong 1 tam gác vuông, nghịch đảo bình phương đường cao xuất phát từ đỉnh góc vuông bằng tổng nhịch đảo bình phương 2 cạnh góc vuông.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng trong tam giác vuông, bình phương trung tuyến ứng với cạnh góc vuông= bình phương cạnh huyền trừ 3/4 cạnh góc vuông đó có cô loan giải đó
ta chứng minh: BM2 = BC2 - 3/4. AC2
Áp dụng ĐL Pi- ta - go trong tam giác vuông ABM ta có: BM2 = AB2 + AM2
Trong tam giác vuông ABC có: AB2 = BC2 - AC2
M là trung điểm của AC nên AM = AC/2
=> BM2 = AB2 + AM2 = BC2 - AC2 + (AC/2)2 = BC2 - AC2 + AC2/ 4 = BC2 - 3/4. AC2 (đpcm)
trong 1 tam giác vuông có tỉ lệ 3 cạnh
đầu tiên bình phương của cạnh huyền bạn bình phương tỉ số đó lên (rồi đánh 1 số nhỏ)
sau đó tổng bình phương 2 cạnh còn lại rồi tính ra cộng lại bằng số bình phương của cạnh huyền (đánh số 2)
từ (1),(2) \(\Rightarrow\)tổng bình phương cạnh huyền bằng tổng bình phương 2 cạnh góc vuông
vậy là ok rồi đó
chúc bạn học tốt
nhớ k nha
hhhh
Tứ giác ABCD có AC vuông góc BD và AC cắt BD tạo O
\(AB^2=0A^2+OB^2\)
\(CD^2=OC^2+OD^2\)
\(AD^2=OA^2+OD^2\)
\(BC^2=OB^2+OC^2\)
\(\Rightarrow AB^2+CD^2=OA^2+OB^2+OC^2+OD^2\)(1)
\(AD^2+BC^2=OA^2+OD^2+OB^2+OC^2\)(2)
Từ (1) và 92) \(\Rightarrow AB^2+CD^2=AD^2+BC^2\)