K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét tam giác IAE và ICB có:

IA = IC (gt)

Góc BIC = góc EIA (vì 2 góc đối đỉnh) 

IB = IC (gt)

Suy ra: tam giác IAE = tam giác ICB (c.g.c)

Suy ra góc AEI = góc IBC (2 góc tương ứng)

mà 2 góc nằm ở vị trí so le trong

nên AE//BC

c,

19 tháng 2 2021

Người ta bảo cm AB//CF mà.

26 tháng 12 2014

Xét tam giác IAE và ICB có

IA = IC ( gt)

góc BIC = góc EIA ( vì 2 góc đối đỉnh )

IB = IC (gt)

suy ra : tam giác IAE = tam giác ICB (c.g.c)

suy ra : góc AEI = góc IBC ( 2 góc tương ứng )

mà 2 góc nằm ở vị trí so le trong

nên AE // BC

 

 

26 tháng 12 2014

xét TAM GIÁC BIC và TAM GIÁC AIE

BI=IE (GT)

IC=AI(GT)

GÓC BIC=GÓC EIA(đối đỉnh)

do đó tam giác BIC=EIA(c-g-c)

=>AE=BE(2 cạnh tương ứng)

=>AE//BC

6 tháng 1 2019

Bạn tự vẽ hình và viết GT;KL

Xét tam giác AIE và tam giác BIC có: AI=IC(I là trung điểm); BI=IE(gt); góc AIE=góc BIC(đối đỉnh)

suy ra tam giác AIE = tam giác CIB(c.g.c)

Suy ra AE=BC(2 cạnh tương ứng) ta có điều phải chứng minh

Chúc bạn học tốt!

6 tháng 1 2019

I A B C E

CM : Xét tam giác AIE và tam giác CIB

có AI = CI (gt)

   EI = BI(gt)

góc AIE = góc BIC (đối đỉnh)

=> tam giác AIE = tam giác CIB (c.g.c)

=> AE = BC ( hai cạnh tương ứng)

21 tháng 1 2022

a. Xét △ABM và △DCM:

\(AM=MD\left(gt\right)\)

\(\hat{AMB}=\hat{DMC}\) (đối đỉnh)

\(BM=MC\left(gt\right)\)

\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)

 

b. Từ a. => \(\hat{MCD}=\hat{MBA}\) (2 góc tương ứng). Mà hai góc này ở vị trí so le trong

\(\Rightarrow CD\text{ // }AB\left(a\right)\)

 

c. Xét △CIK và △AIB:

\(AI=IC\left(gt\right)\)

\(\hat{AIB}=\hat{CIK}\) (đối đỉnh)

\(BI=IK\left(gt\right)\)

\(\Rightarrow\Delta CIK=\Delta AIB\left(c.g.c\right)\Rightarrow\hat{ICK}=\hat{IAB}\). Mà hai góc ở vị trí so le trong

\(\Rightarrow AB\text{ // }CK\left(b\right)\)

Từ (a) và (b), theo tiên đề Ơ-clit \(\Rightarrow AB\text{ // }DK\)

Vậy: D, C, K thẳng hàng (đpcm).

21 tháng 1 2022

a) Xét tam giác ABM và tam giác DCM:

BM = CM (M là trung điểm BC).

\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh).

MA = MD (cmt).

\(\Rightarrow\) Tam giác ABM = Tam giác DCM (c - g - c).

b) Ta có: \(\widehat{BAM}=\widehat{CDM}\) (Tam giác ABM = Tam giác DCM).

Mà 2 góc này ở vị trí so le trong.

\(\Rightarrow\) CD // AB (dhnb).

c) Xét tứ giác AKCB có:

I là trung điểm AC (gt).

I là trung điểm BK (IB = IK).

\(\Rightarrow\) Tứ giác AKCB là hình bình hành (dhnb).

\(\Rightarrow\) CK // AB (Tính chất hình bình hành).

Mà CD // AB (cmt).

\(\Rightarrow\) D, C, K thẳng hàng.

6 tháng 1 2019

Xét tam giác IAE và ICB có:

IA = IC (gt)

Góc BIC = góc EIA (vì 2 góc đối đỉnh) 

IB = IC (gt)

Suy ra: tam giác IAE = tam giác ICB (c.g.c)

Suy ra góc AEI = góc IBC (2 góc tương ứng)

mà 2 góc nằm ở vị trí so le trong

nên AE//BC

9 tháng 11 2016

ko biết làm

a) Xét ΔAIB và ΔCID có

IA=IC(I là trung điểm của AC)

\(\widehat{AIB}=\widehat{CID}\)(hai góc đối đỉnh)

IB=ID(gt)

Do đó: ΔAIB=ΔCID(c-g-c)

b) Xét ΔAID và ΔCIB có 

IA=IC(I là trung điểm của AC)

\(\widehat{AID}=\widehat{CIB}\)(hai góc đồng vị)

ID=IB(gt)

Do đó: ΔAID=ΔCIB(c-g-c)

Suy ra: AD=CB(Hai cạnh tương ứng) và \(\widehat{DAI}=\widehat{BCI}\)(hai góc tương ứng)

mà \(\widehat{DAI}\) và \(\widehat{BCI}\) là hai góc ở vị trí so le trong

nên AD//BC(Dấu hiệu nhận biết hai đường thẳng song song)

a: Xét ΔAIB và ΔCID có 

IA=IC

\(\widehat{AIB}=\widehat{CID}\)

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có 

I là trung điểm của AC

I là trung điểm của BD

Do đó: ABCD là hình bình hành

Suy ra: AD//BC và AD=BC

c: Xét tứ giác AFCE có 

AF//CE

AF=CE

Do đó: AFCE là hình bình hành

Suy ra: Hai đường chéo AC và FE cắt nhau tại trung điểm của mỗi đường

hay IE=IF