có tồn tại 2 số dương a,b (a khác b) thõa mãn 1/a - 1/b =1/a-b không?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a . theo đề bài :
a + b = a .b = a : b
a . b = a : b => a .b .b = a => b^2 = a : a = > b = 1 hoặc b -1
Với b = 1 thì a . 1 = a + 1 = > a = a + 1 ( loại )
Với b = -1 thì a . -1 = a + -1 => -a = a + -1 => -2a = -1 => a = 1/2
b ,c tương tự nhe
a ) Theo bài ra ta có ;
a+ b = a.b = a : b
Với a . b = a : b => a .b. b = a => b^2 = a : a= > b^2 = 1 => b = 1 hoặc -1
(+) b = 1 => a. 1 = a + 1 => a = a+ 1 => 0a = 1 ( laoij )
(+) b = -1 => a.-1 = a + (-1) => -a = a- 1 => -2a = -1 => a= -1/2
VẬy b= -1 và a = 1/2
B) tương tự
Gs a+b+c>1/a+1/b+1/c nhưng không t/m một và chỉ một trong 3 số a,b,c lớn hơn 1 TH1:Cả 3 số a,b,c đều lớn hơn 1 hoặc đều nhỏ hơn 1 suy ra mâu thẫn( vì abc=1) TH2 có 2 số lớn hơn 1 Gs a>1,b>1,c<1 suy ra a-1>0,b-1>0,c-1<0 suy ra (a-1)(b-1)(c-1)<0 suy ra abc+a+b+c-(ab+bc+ca)-1<0 suy ra a+b+c<ab+bc+ca suy ra a+b+c<abc/c+abc/a+abc/b suy ra a+b+c<1/a+1/b+1/c(mâu thuẫn với giả thuyết nên điều giả sử sai) suy ra đpcm
TL
Khi nào rảnh vào kênh H-EDITOR xem vid nha!!! Thanks!
Ta có
\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\Leftrightarrow b\left(a-b\right)-a\left(a-b\right)=ab\)
\(\Leftrightarrow ab-b^2-a^2+ab=ab\Leftrightarrow a^2+b^2-ab=0\) (1)
Theo cosi
\(\frac{a+b}{2}\ge\sqrt{ab}\Leftrightarrow\frac{a^2+b^2+2ab}{4}\ge ab\Leftrightarrow a^2+b^2-ab\ge ab\)
Do a,b>0 nên ab>0 => \(a^2+b^2-ab>0\) (2)
Từ (1) và (2) => không tồn tại 2 số dương thoả mãn điều kiện đề bài