K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2020

Chứng minh BĐT phụ :

\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

Thật vậy : \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow x^2+y^2-2xy\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) ( luôn đúng )

Áp dụng vào bài toán ta có : \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow2025\ge\left(x+y\right)^2\)

\(\Leftrightarrow-45\le x+y\le45\)

Vậy : \(min\left(x+y\right)=-45,max\left(x+y\right)=45\)

20 tháng 5 2021

\(\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)

\(\Rightarrow2\ge3x^2+2y^2+2z^2+y^2+z^2\) 

\(\Leftrightarrow2\ge3\left(x^2+y^2+z^2\right)\)

Có: \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\le2\)

\(\Rightarrow\)\(A^2\le2\) \(\Leftrightarrow A\in\left[-\sqrt{2};\sqrt{2}\right]\)

minA=-1\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+y+z=-\sqrt{2}\\x=y=z\end{matrix}\right.\)  \(\Rightarrow x=y=z=-\dfrac{\sqrt{2}}{3}\)

maxA=1\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=\sqrt{2}\\x=y=z\end{matrix}\right.\) \(\Rightarrow x=y=z=\dfrac{\sqrt{2}}{3}\)

 

13 tháng 10 2021

sai chiều bđt r

 

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Bạn tham khảo lời giải tại đây:

cho \(x,y,z\ge0\) thỏa mãn \(x y z=6\). tìm GTLN và GTNN của biểu thức \(A=x^2 y^2 z^2\) - Hoc24

25 tháng 12 2019

We have:

\(x^2+2xy+6x+6y+2y^2+8=0\)

\(\Leftrightarrow\left(x+y+3\right)^2=-y^2+1\)

\(\Rightarrow\left(x+y+3\right)^2\le1\)

\(\Rightarrow-1\le x+y+3\le1\)

\(\Rightarrow2015\le x+y+2019\le2017\)

Sign '=' happen when \(x=-4;x=-2;y=0\)