K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2023

loading...

Xét \(\Delta\) HBA và \(\Delta\) ABC có \(\widehat{H}\)  =  \(\widehat{A}\) = 900\(\widehat{B}\) chung

⇒  \(\Delta\) HBA  \(\sim\)  \(\Delta\) ABC (g-g)

Tương tự ta có:   \(\Delta\) HAC  \(\sim\)  \(\Delta\) ABC (g-g-g)

    ⇒ \(\Delta\) HBA  \(\sim\)   \(\Delta\) HAC ( t/c hai tam giác đồng dạng)

   \(\dfrac{HB}{HA}\) = \(\dfrac{HA}{HC}\) = \(\dfrac{BA}{AC}\)( theo khái niệm của tam giác đồng dạng.)

Mặt khác: KI là đường trung bình của tam giác ABH nên:

        \(\dfrac{HI}{HA}\) = \(\dfrac{HK}{HB}\) ⇒  \(\dfrac{HK}{HI}\) =   \(\dfrac{HB}{HA}\)

⇒ \(\dfrac{HK}{HI}\) = \(\dfrac{HA}{HC}\) mà \(\widehat{AHK}\) = \(\widehat{CHI}\)  = 900

⇒ \(\Delta\)  AHK \(\sim\) \(\Delta\) CHI ( c-g-c)

b, Kéo dài CI cắt AK tại D ta có:

vì  \(\Delta\)  AHK \(\sim\) \(\Delta\) CHI \(\widehat{HAK}\) = \(\widehat{HCI}\)

Xét \(\Delta\) HAK và \(\Delta\) DCK có: \(\widehat{A}\) = \(\widehat{C}\) ( cmt)

                                           \(\widehat{K}\) chung

   ⇒ \(\Delta\) HAK \(\sim\) \(\Delta\) DCK ( g-g)

  ⇒ \(\widehat{H}\) = \(\widehat{D}\)= 900 ⇒ AK \(\perp\) CI tại D ( đpcm)

 

 

      

 

 

a: Xét ΔAHI vuông tại H và ΔACH vuông tại H có

góc HAI chung

=>ΔAHI đồng dạng với ΔACH

Xét ΔAHI vuông tại Ivà ΔHCI vuông tại I có

góc HAI=góc CHI

=>ΔAHI đồng dạng với ΔHCI

b: Xet ΔIHC có IM/IH=IK/IC

nên MK//HC

=>MK vuông góc AH

Xet ΔAHK có

KM,HI là đường cao

KM cắt HI tại M

=>M là trực tâm

=>AM vuông góc HK tại N

=>MN là đường cao của ΔHMK

17 tháng 4 2023

Cs hình ko ạ 😅

a: Xét ΔADE vuông tại E và ΔCDA vuông tại A có

góc CDA chung

=>ΔADE đồng dạng với ΔCDA

b: DE*DC=DA^2=AB^2/4

c: DB^2=DE*DC

=>DB/DE=DC/DB

=>ΔDBC đồng dạng với ΔDEB

=>góc DCB=góc DBE

30 tháng 3 2021

                               Bài giải

a) Xét tam giác ABH và CAH có:

  \(\widehat{AHB}=\widehat{CHA}\left(=90^o\right)\)

\(\widehat{BAH}=\widehat{ACH}\left(=90^o-\widehat{ABC}\right)\)
\(\Rightarrow\Delta ABH\infty\Delta CAH\left(g.g\right)\)

 \(\Delta ABH\infty\Delta CAH\left(g.g\right)\) (câu a)  \(\Rightarrow\dfrac{AB}{AC}=\dfrac{BH}{AH}=\dfrac{BH\text{ : }2}{AH\text{ : 2}}=\dfrac{BP}{AQ}\)

Xét \(\Delta ABP \text{và }\Delta CAQ\) có: BPAQ=ABAC

                                        \(\widehat{CAH}=\widehat{ABH}\left(=90^o-\widehat{BAH}\right)\)

\(\Rightarrow\Delta ABP\infty\Delta CAQ\left(c.g.c\right)\)

b, Ta có: PQ là đg trung bình của\(\Delta ABH\Rightarrow\text{ }PQ\text{ // }AB\text{ }\Rightarrow\text{ }PQ\perp AC\)  

Mà AHPC  => Q là trực tâm của \(\Delta APC\)

\(\Rightarrow\text{ }AP\perp CQ\)