Với những giá trị nguyên nào của n thì 2n^2 − n chia hết cho n + 1.
A. n ∈ {−4; −2; 0}
B. n ∈ {−4; −2; 0; −2}
C. n ∈ {−4; −2; 0; 2}
D. n ∈ {−4; −2; 0; 2; 4}
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(a+2\right)^2-\left(a-2\right)^2\)
\(=a^2+4a+4-a^2+4a-4=8a⋮4\)
b: \(\Leftrightarrow n^3-n^2+3n^2-3n+2⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{2;0;3;-1\right\}\)
\(a)\) Để \(A\) là phân số thì \(2n-4\ne0\)
\(\Leftrightarrow\)\(n\ne2\)
Vậy với \(n\ne2\) thì biểu thức A là phân số .
\(b)\) Ta có : \(\left(2n+2\right)⋮\left(2n-4\right)\) thì A là số nguyên :
\(\Leftrightarrow\)\(2n+2=2n-4+6\) chia hết cho \(2n-4\)\(\Rightarrow\)\(6⋮\left(2n-4\right)\)\(\Rightarrow\)\(\left(2n-4\right)\inƯ\left(6\right)\)
Mà \(Ư\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
Suy ra :
\(2n-4\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(3\) | \(-3\) | \(6\) | \(-6\) |
\(n\) | \(2,5\) | \(1,5\) | \(3\) | \(1\) | \(3,5\) | \(0,5\) | \(5\) | \(-1\) |
Vậy \(n\in\left\{3;1;5;-1\right\}\)
b, Để a nguyên hay \(2n+2⋮2n-4\Leftrightarrow2n-4+6⋮2n-4\)
\(\Rightarrow2n-4\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
2n - 4 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
2n | 5 | 3 | 6 | 2 | 7 | 1 | 10 | -2 |
n | 5/2 ( ktm ) | 3/2 ( ktm ) | 3 | 1 | 7/2 ( ktm ) | 1/2 ( ktm ) | 5 | -1 |
Giải:
a) Để A=2n+2/2n-4 là phân số thì n ∉ {-1;1;2;3;5}
b) Để A là số nguyên thì 2n+2 ⋮ 2n-4
2n+2 ⋮ 2n-4
=>(2n-4)+6 ⋮ 2n-4
=>6 ⋮ 2n-4
=>2n-4 ∈ Ư(6)={-1;1;2;-2;3;-3;6;-6}
Vì 2n-4 là số chẵn nên 2n-4 ∈ {2;-2;6;-6}
Ta có bảng giá trị:
+)2n-4=2
n=3
+)2n-4=-2
n=1
+)2n-4=6
n=5
+)2n-4=-6
n=-1
Vậy n ∈ {-1;1;3;5}
Chúc bạn học tốt!
Ta có : n3 - 2n + 3n + 3
= n3 - n + 3
= n(n2 - 1)
= n(n - 1)(n + 1) + 3
Để n3 - 2n + 3n + 3 chia hết cho n - 1
=> n(n - 1)(n + 1) + 3 chia hết cho n - 1
=> 3 chia hết cho n - 1
=> n - 1 thuộc Ư(3) = {-3;-1;1;3}
=> n = {-2;0;2;4}
a) n+5 chia hết cho n-1
Ta có: n+5 = (n-1)+6
=> n-1 và 6 cùng chia hết cho n-1 hay n-1\(\in\)Ư(6)={-1;1;-2;2;-3;3;-6;6}
=> n\(\in\){0;2;-1;3;-2;4;-5;7}
b) n+5 chia hết cho n+2
Ta có: n+5 = (n+2)+3
=> n+2 và 3 cùng chia hết cho n+2 hay n+2\(\in\)Ư(3)={-1;1;-3;3;}
=> n\(\in\){-3;-1;-5;1;}
c) 2n-4 chia hết cho n+2
Ta có: 2n-4 = 2(n+2)-8
=> 2(n+2) và 8 cùng chia hết cho n+2 hay n+2\(\in\)Ư(8)={-1;1;-2;2;-4;4;-8;8}
=> n\(\in\){-3;-1;-4;0;-6;2;-10;6}
d) 6n+4 chia hết cho 2n+1
Ta có: 6n+4 = 3(2n+1)+1
=> 3(2n+1) và 1 cùng chia hết cho 2n+1 hay 2n+1\(\in\)Ư(1)={-1;1;}
=> n\(\in\){-1;0}
e) 3-2n chia hết cho n+1
Ta có: 3-2n= -2(1+n)+5
=> -2(1+n) và 5 cùng chia hết cho n+1 hay n+1\(\in\)Ư(5)={-1;1;-5;5;}
=> n\(\in\){-2;0;-6;4;}
C
Với những giá trị nguyên nào của n thì 2n^2 − n chia hết cho n + 1.
A. n ∈ {−4; −2; 0}
B. n ∈ {−4; −2; 0; −2}
C. n ∈ {−4; −2; 0; 2}
D. n ∈ {−4; −2; 0; 2; 4}