Cho tam giác ABC vuông tại A có AB = 12 cm, AC = 16 cm. Vẽ đường cao AH.
a) Chứng minh HBA ഗ ABC
b) Kẻ Tia phân giác của góc ABC cắt AC Tại N. Tính NA, NC.
c) Gọi M là giao điểm của AH và BN .Chứng minh: AM = AN
d) Kẻ HI song song với BN (I thuộc AC). Chứng minh : AN^2 =NI.NC
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạngvới ΔABC
b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
BN là phan gíac
=>AN/AB=CN/BC
=>AN/3=CN/5=(AN+CN)/8=16/8=2
=>AN=6cm; CN=10cm
c: góc AMN=góc BMH
góc ANM=góc BMH
=>góc AMN=góc ANM
=>AM=AN