K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=(AD+CD)/(3+5)=8/8=1

=>AD=3cm; CD=5cm

c: góc AID=góc BIH=90 độ-góc DBC

góc ADI=90 độ-góc ABD

góc CBD=góc ABD

=>góc AID=góc ADI

=>ΔAID cân tại A

5 tháng 4 2023

a) Do \(\Delta ABC\) vuông tại A áp dụng định lý Py-ta-go ta có:

\(BC^2=AB^2+AC^2\)

\(BC^2=6^2+8^2\)

\(BC^2=36+64\)

\(BC^2=100\)

\(BC=\sqrt{100}=10\left(cm\right)\)

Do BD là phân giác của \(\Delta ABC\) áp dụng định lý đường phân giác trong tam giác ta có:

\(\dfrac{BA}{BC}=\dfrac{AD}{CD}\) hay \(\dfrac{6}{10}=\dfrac{AD}{CA-AD}\) 

\(\Rightarrow\dfrac{6}{10}=\dfrac{AD}{8-AD}\)

\(\Leftrightarrow6\left(8-AD\right)=10AD\)

\(\Leftrightarrow48-6AD=10AD\)

\(\Leftrightarrow48=10AD+6AD\)

\(\Leftrightarrow48=16AD\)

\(\Leftrightarrow AD=\dfrac{48}{16}=3\left(cm\right)\)

30 tháng 3 2022

a, Xét ΔABC và ΔHBA có :

\(\widehat{A}=\widehat{AHB}=90^0\)

\(\widehat{B}:chung\)

\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g-g\right)\)

b, Xét ΔABC vuông tại A, theo định lý Pi-ta-go ta có :

\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

Ta có : \(\Delta ABC\sim\Delta HBA\left(cmt\right)\)

\(\Rightarrow\dfrac{AC}{AH}=\dfrac{BC}{AB}\)

hay \(\dfrac{8}{AH}=\dfrac{10}{6}\)

\(\Rightarrow AH=\dfrac{8.6}{10}=4,8\left(cm\right)\)

c, Xét ΔAHB và ΔCHA có :

\(\widehat{BHA}=\widehat{AHC}=90^0\)

\(\widehat{BAH}=\widehat{C}\left(phụ\cdot với\cdot\widehat{B}\right)\)

\(\Rightarrow\Delta AHB\sim\Delta CHA\left(g-g\right)\)

\(\Rightarrow\dfrac{AH}{HC}=\dfrac{BH}{AH}\)

\(\Rightarrow AH^2=HC.BH\)

d, Xét ΔABD và ΔHBI có :

\(\widehat{H}=\widehat{A}=90^0\)

\(\widehat{ABD}=\widehat{HBI}\left(phân\cdot giác\cdot BD\right)\)

\(\Rightarrow\Delta ABD\sim\Delta HBI\left(g-g\right)\)

\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BD}{BI}\)

\(\Rightarrow AB.BI=BD.HB\left(đpcm\right)\)

b) Xét ΔABH có BI là đường phân giác ứng với cạnh AH(Gt)

nên \(\dfrac{IH}{IA}=\dfrac{BH}{BA}\)(Tính chất đường phân giác của tam giác)(1)

Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{DC}=\dfrac{BA}{BC}\)(Tính chất đường phân giác của tam giác)(2)

Xét ΔABH vuông tại H và ΔCBA vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔABH∼ΔCBA(g-g)

Suy ra: \(\dfrac{AB}{CB}=\dfrac{BH}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)(3)

Từ (1), (2) và (3) suy ra \(\dfrac{IH}{IA}=\dfrac{AD}{DC}\)(đpcm)

9 tháng 3 2022

Dành cho anh em nào cần phần C nha

Xét ∆HIB và ∆AID có:

Góc IHB= góc IAD

     Góc I( đối đỉnh)

Suy ra ∆HIB đồng dạng vs ∆ AID

Suy ra góc HBI = ADI

Mà tâm giác BIH vuông tại H nên Góc HBI = BIH

Mà hai góc I đối đỉnh nên góc HBI = AID 

Mà góc HBI = ADI 

Nên góc ADI = góc AID 

Suy ra tâm giác AID cân (đpcm) (hơi dài nhỉ nhưng có cách ngắn nhưng nó sẽ không chi tiết mong ae thông cảm )

 

 

 

 

21 tháng 3 2021

A B C 6 8 H D I

a, Xét tam giác ABC vuông tại A, có AH là đường cao 

Áp dụng định lí Py ta go ta có : 

\(BC^2=AB^2+AC^2=36+64\)

\(\Rightarrow BC^2=100\Rightarrow BC=10\)cm 

Vì BD là phân giác ^ABC nên 

\(\frac{AB}{BC}=\frac{AD}{DC}\)(1) mà \(AD=AC-DC=8-DC\)

hay \(\frac{6}{10}=\frac{8-DC}{DC}\Rightarrow6DC=80-10DC\)

\(\Leftrightarrow16DC=80\Leftrightarrow DC=5\)cm 

\(\Rightarrow AD=AC-DC=8-5=3\)cm 

b, Xét tam giác BHA và tam giác BAC ta có 

^BHA = ^A = 900

^B _ chung 

Vậy tam giác BHA ~ tam giác BAC ( g.g )

\(\Rightarrow\frac{BH}{BA}=\frac{AB}{BC}\) ( tỉ số đồng dạng ) (2) 

Từ (1) và (2) \(\Rightarrow\frac{BH}{BA}=\frac{AD}{DC}\)(3)

xem lại đề đi nếu như thành \(\frac{IH}{AD}=\frac{IA}{DC}\)

sao lại có tam giác IHA được ? hay còn cách nào khác ko ? 

23 tháng 3 2021

cần phần c

 

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Xét ΔABC có 

BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{AB}=\dfrac{DC}{BC}\)(Định lí tia phân giác của tam giác)

\(\Leftrightarrow\dfrac{AD}{6}=\dfrac{DC}{10}\)

mà AD+DC=AC(D nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{DC}{10}=\dfrac{AD+DC}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{DC}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\DC=5\left(cm\right)\end{matrix}\right.\)

Vậy: AD=3cm; DC=5cm

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét ΔBAC có BD là phan giác

=>AD/AB=DC/BC

=>AD/3=DC/5=8/8=1

=>AD=3cm; DC=5cm

b: Xét ΔBAD vuông tại A va ΔBHI vuông tại H có

góc ABD=góc HBI

=>ΔBAD đồng dạng với ΔBHI

=>AD/HI=BA/BH

=>AD*BH=HI*BA
c: góc ADI=góc BIH=góc AID

=>ΔAID cân tại A

24 tháng 4 2022

ai giúp mình với ạ:( ko phải làm câu a đâu ạ

 

 

a: BC=10cm

Xét ΔBAC có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5

Áp dụng tính chất của dãy tỉ sốbằng nhau, ta được:

AD/3=CD/5=(AD+CD)/(3+5)=8/8=1

=>AD=3cm; CD=5cm

b: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có

góc ABD=góc HBI

Do đó:ΔBAD đồng dạng với ΔBHI

Suy ra: BA/BH=BD/BI

hay \(BA\cdot BI=BH\cdot BD\)

c: góc AID=góc BIH=90 độ-góc DBC

góc ADI=90 độ-góc ABD

mà góc DBC=góc ABD

nên góc AID=góc ADI

hay ΔAID cân tại A