Tìm GTNN của A = (x + y)(x + z) với x, y, z > 0 , xyz(x + y + z) = 1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Hoàng Thái Dương - Toán lớp 8 - Học toán với OnlineMath
B=(x+y)/xyz=1/yz + 1/xz
có (x-y)2 = x2-2xy+y2 >/ 0 => x2-2xy+y2+4xy >/ 4xy =>(x+y)2 >/ 4xy => 1/x + 1/y >/ 4/x+y , đẳng thức xảy ra <=> x=y
=> B=1/yz + 1/xz >/ 4/yz+xz = 4/z(x+y) = 4/z(1-z)
áp dụng bđt am-gm z(1-z) </ (z+1-z)2/4 </ 1/4
=> B >/ 4/1/4 >/ 16 ,minB=16 ,đẳng thức xảy ra <=> x=y=1/4;z=1/2
Cái đề thế này ah
\(\frac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
Vì \(\hept{\begin{cases}x\ge0\\y\ge0\\z\ge0\end{cases}}\)
\(\Rightarrow\frac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\ge0\)