Bài 1: Cho A(x) = x 3 – 2x2 + 5x – 2 – x 3 + x + 7 1/ Thu gọn rồi sắp xếp đa thức theo lũy thừa giảm của x. Tìm bậc, hệ số cao nhất, hệ số tự do. 2/ Tìm đa thức H(x) biết H(x) – (2x 2 + 3x – 10) = A(x) 3/ Tìm nghiệm của H(x).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a: f(x)=2x^4+2x^3+2x^2+5x+6
g(x)=x^4-2x^3-x^2-5x+3
c: h(x)=2x^4+2x^3+2x^2+5x+6+x^4-2x^3-x^2-5x+3=3x^4+x^2+9
K(x)=f(x)-2g(x)-4x^2
=2x^4+2x^3+2x^2+5x+6-2x^4+4x^3+2x^2+10x-6-4x^2
=6x^3+15x
c: K(x)=0
=>6x^3+15x=0
=>3x(2x^2+5)=0
=>x=0
d: H(x)=3x^4+x^2+9>=9
Dấu = xảy ra khi x=0
a) \(M\left(x\right)=-2x^5+5x^2+7x^4-5x+8+2x^5-7x^4-4x^2+6\)
\(=\left(-2x^5+2x^5\right)+\left(7x^4-7x^4\right)+\left(5x^2-4x^2\right)-9x+\left(8+6\right)\)
\(=x^2-9x+14\)
\(N\left(x\right)=7x^7+x^6-5x^3+2x^2-7x^7+5x^3+3\)
\(=\left(7x^7-7x^7\right)+x^6-\left(5x^3-5x^3\right)+2x^2+3\)
\(=x^6+2x^2+3\)
b) Đa thức M(x) có hệ số cao nhất là 1
hệ số tự do là 14
bậc 2
Đa thức N(x) có hệ số cao nhất là 1
hệ số tự do là 3
bậc 6
a) \(P\left(x\right)=5x^3-3x^2+8-3x^3+4x^5-3+8x+5x^2\)
\(P\left(x\right)=\left(5x^3-3x^3\right)-\left(3x^2-5x^2\right)+\left(8-3\right)+4x^5+8x\)
\(P\left(x\right)=2x^3+2x^2+5+4x^5+8x\)
b) Đa thức có bậc là: 5, hệ số cao nhất là 8, hệ số tự do là: 5
c) Sắp xếp theo lũy thừa giảm dần:
\(P\left(x\right)=2x^3+2x^2+5+4x^5+8x\)
\(P\left(x\right)=4x^5+2x^3+2x^2+8x+5\)
\(A\left(x\right)=4x^3+12x-24x^2-2x^2+4x+17\)
\(=4x^3-26x^2+16x+17\)
Bậc là 3
Hệ số cao nhất là 6
Hệ số tự do là17
\(B\left(x\right)=5x^2-7x+3-2x^2+4x-8=3x^2-3x-5\)
Bậc là 2
Hệ số cao nhất là 3
Hệ số tự do là -5
a)\(M\left(x\right)=3x^4-x^3-2x^2+5x+7\)
\(N\left(x\right)=-3x^4+x^3+10x^2+x-7\)
a) P(x) = -2x^2 + 4x^4 – 9x^3 + 3x^2 – 5x + 3
=4x^4-9x^3+x^2-5x+3
Q(x) = 5x^4 – x^3 + x^2 – 2x^3 + 3x^2 – 2 – 5x
=5x^4-3x^3+4x^2-5x-2
b)
P(x)
-bậc:4
-hệ số tự do:3
-hệ số cao nhất:4
Q(x)
-bậc :4
-hệ số tự do :-2
-hệ số cao nhất:5
`1)`
`A(x)=x^3-2x^2+5x-2-x^3+x+7`
`A(x)=(x^3-x^3)-2x^2+(5x+x)+(-2+7)`
`A(x)=-2x^2+6x+5`
Bậc của đa thức: `2`
Hệ số cao nhất: `-2`
Hệ số tự do: `5`
`2)`
`H(x)-(2x^2 + 3x – 10) = A(x)`
`H(x)-(2x^2 + 3x – 10)=-2x^2+6x+5`
`H(x)= (-2x^2+6x+5)+(2x^2 + 3x – 10)`
`H(x)=-2x^2+6x+5+2x^2 + 3x – 10`
`H(x)=(-2x^2+2x^2)+(6x+3x)+(5-10)`
`H(x)=9x-5`
`3)`
Đặt `9x-5=0`
`9x=0+5`
`9x=5`
`-> x=5/9`