Biết rằng đa thức f(x) chia cho đa thức g(x) = x - 2 được dư là 21, chia cho đa thức h(x) = x ^ 2 + 2 được đa thức dư là 2x−1. Tìm đa thức dư khi chia đa thức f(x) cho đa thức h(x).g(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(8x^3-18x^2+x+6\)
\(=8x^3-16x^2-2x^2+4x-3x+6\)
\(=8x^2\left(x-2\right)-2x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x-2\right)\left(8x^2-2x-3\right)\)
\(=\left(x-2\right)\left(8x^2-6x+4x-3\right)\)
\(=\left(x-2\right)\left[2x\left(4x-3\right)+\left(4x-3\right)\right]\)
\(=\left(x-2\right)\left(2x+1\right)\left(4x-3\right)\)
=> g(x) có 3 nghiệm là
x-2=0 <=> x=2
2x+1=0 <=> x=-1/2
4x-3=0 <=> x=3/4
vậy đa thức g(x) có nghiệm là x={2;-1/2;3/4}
b) tự làm đi (mk ko bt làm)
\(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)
Giả sử \(f\left(x\right)\) chia cho \(x^2-5x+6\) được thương là\(Q\left(x\right)\) và dư \(ax+b\)
=> \(f\left(x\right)=Q\left(x\right).\left(x-2\right)\left(x-3\right)+ax+b\)
Có \(f\left(x\right)\) chia cho x - 3 dư 7 ; chia cho x - 2 dư 5
=> \(\left\{{}\begin{matrix}f\left(3\right)=7\\f\left(2\right)=5\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}3a+b=7\\2a+b=5\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
=> \(f\left(x\right)\)chia cho \(x^2-5x+6\) dư 2x + 1
Giả sử đa thức bị chia là m (x)
Gia sử thương là : q( x )
Vì đa thức chia có bậc là 2 , Suy ra thương có bậc là 1
Suy ra , ta có : m( x ) =( x2 - 5x + 6 ) q( x ) = ax + b
Đi tìm X
x2 - 5x + 6 = 0
x2 - 2x - 3x + 6 = 0
x( x - 2) - 3(x - 2) = 0
( x - 2)( x - 3) = 0
Vậy x = 2 hoặc x = 3
Ta có giả thiết f( x ) chia cho x - 2 dư 5 ,từ đó ta được :
f( 2 ) = 5
-> 2a + b = 5 ( 1)
Ta lại có giả thiết f( x ) chia cho x - 3 dư 7 ,Từ đó ta được :
f( 3 ) = 7
-> 3a + b = 7 ( 2)
Từ ( 1 và 2) suy ra : a = 2 ; b = 1
Suy ra : f( x ) = ( x2 - 5x + 6 ) Thay số q( x ) = 2x + 1
Vậy dư là 2x +1
Dư trong phép chia cho \(x^2-x=x\left(x-1\right)\) là hằng số.
Gọi thương của phép chia là \(Q\left(x\right)\) và dư là \(r\), với mọi \(x\) ta có:
\(f\left(x\right)=\left(x^2+x-1\right)^{10}+\left(x^2-x+1\right)^{10}=\left(x^2-x\right).Q\left(x\right)+\left(ax+b\right)\)
Với \(x=0\) thì \(f\left(0\right)=\left(0^2+0-1\right)^{10}+\left(0^2-0+1\right)^{10}=\left(0^2-0\right).Q\left(0\right)+r\)
Khi đó, \(2=r\)
Với \(x=1\) thì \(f\left(1\right)=\left(1^2+1-1\right)^{10}+\left(1^2-1+1\right)^{10}=\left(1^2-1\right).Q\left(1\right)+r\)
Do đó, \(2=r\)
Vậy, số dư của phép chia là \(2\)