Tính các tích sau:
A= 3/4.8/9.15/16...9999/10000
B=(1-1/4).(1-1/9)...(1-1/10000).
C=(1+1/1.3)(1+1/2.4)(1+1/3.15)....(1+1/99.100).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\dfrac{3}{4}.\dfrac{8}{9}.....\dfrac{9999}{10000}\)
A=\(\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.....\dfrac{99.101}{100.100}\)
A=\(\dfrac{1.2.3.....99}{2.3.4.....100}.\dfrac{3.4.....101}{2.3.4.....100}\)
A=\(\dfrac{1}{100}.\dfrac{101}{2}\)
A=\(\dfrac{101}{200}\)
\(A=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.....\dfrac{99.101}{100.100}\\ =\dfrac{1}{2}.\dfrac{101}{100}=\dfrac{101}{200}\)
\(B=\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)...\left(1-\dfrac{1}{10000}\right)\\ =\dfrac{3}{4}.\dfrac{8}{9}...\dfrac{9999}{10000}\)
(làm như câu a)
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{9999}{10000}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{99.101}{100.100}\)
\(=\frac{1.2.3....99}{2.3.4....100}.\frac{3.4.5....101}{2.3.4...100}\)
\(=\frac{1}{100}.\frac{101}{2}=\frac{101}{200}\)
\(B=\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).....\left(1-\frac{1}{10000}\right)\)
\(=\frac{3}{4}.\frac{8}{9}....\frac{9999}{10000}=\frac{101}{200}\)
3/4.8/9.15/16......9999/10000
= 3.8.15.....9999/4.9.16......10000
=101/50
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)....\left(\frac{1}{2003}-1\right)\)
=\(\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}.....\frac{-2002}{2003}\)
=\(\frac{1}{2003}\)
\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{9999}{10000}\)
=\(\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{99.101}{100.100}\)
=\(\frac{\left(1.2.3.....99\right)\left(3.4.5.....101\right)}{\left(2.3.4.....100\right)\left(2.3.4.....100\right)}\)
=\(\frac{101}{100.2}\)
=\(\frac{101}{200}\)
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{9999}{10000}\)
\(A=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{99.101}{100.100}\)
\(A=\frac{\left(1.2.3.....99\right).\left(3.4.5.....101\right)}{\left(2.3.4.....100\right).\left(2.3.4.....100\right)}\)
\(A=\frac{1.101}{2.100}=\frac{101}{200}\)
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}......\frac{9999}{10000}\)
\(A=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{99.101}{100.100}\)
\(A=\frac{1.2.3.4.....99}{2.3.4.5.....100}.\frac{3.4.5.6.....101}{2.3.4.5.....100}\)
\(A=\frac{1}{100}.\frac{101}{2}\)
\(A=\frac{101}{200}\)
A = \(\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot\cdot\cdot\cdot\frac{9999}{10000}=\frac{1\cdot3}{2.2}\cdot\frac{2\cdot4}{3\cdot3}\cdot\frac{3.5}{4.4}\cdot\cdot\cdot\cdot\frac{99\cdot101}{100\cdot100}=\frac{1}{2}\cdot\frac{101}{100}=\frac{101}{200}\)
B = ( 1- 1/4 )( 1-1/9) ...( 1-1/10000 ) = 3/4 . 8/9 .....9999/100000 ( tương tự A )
a=5051/100 co ma