Cho tam giác ABC vuông tại A (AB<AC), đường cao AH (H ∈ BC).
a) Chứng minh : AABC dồng dạng với AHBA.
b) Lấy điểm M thuộc AH. Kẻ đường thẳng đi qua B và vuông góc với CM tại K. Chứng minh : CM.CK = CH.CB.
c) Tia BK cắt HA tại D. Chứng minh: BKH = BCD.
giúp mình câu c với ạ!
a: Xet ΔABC vuông tại A và ΔHBA vuôngtại H có
góc B chung
=>ΔABC đồng dạngvới ΔHBA
b: Xet ΔCHM vuông tại H và ΔCKB vuông tại K có
góc HCM chung
=>ΔCHM đồng dạngvới ΔCKB
=>CH/CK=CM/CB
=>CH*CB=CK*CM
c: Xét ΔBHD vuông tại H và ΔBKC vuông tại K có
goc HBD chung
=>ΔBHD đồng dạng với ΔBKC
=>BH/BK=BD/BC
=>BH/BD=BK/BC
=>ΔBHK đồng dạng vơi ΔBDC
=>góc BKH=góc BCD