Lấy điểm D trong \(\Delta ABC\)cân tại A sao cho AD = BC.Biết\(\widehat{BAD}+3\widehat{CAD}=60^0\) ,tính \(\widehat{DCA}\)theo \(\widehat{BAD}\)và\(\widehat{CAD}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NV
Nguyễn Việt Lâm
Giáo viên
17 tháng 4 2022
\(S_{\Delta ACD}=\dfrac{1}{2}AC.AD.sin\widehat{CAD}=\dfrac{a^2\sqrt{3}}{4}\)
\(V=\dfrac{AB.AC.AD}{6}.\sqrt{1+2cos90^0.cos60^0.cos120^0-cos^290^0-cos^260^0-cos^2120^0}=\dfrac{a^3\sqrt{2}}{12}\)
\(\Rightarrow d\left(B;\left(ACD\right)\right)=\dfrac{3V}{S}=\dfrac{a\sqrt{6}}{3}\)
Trên nửa mặt phẳng bờ AD, dựng tam giác đều ADE khác phía với điểm C. Nối E với C.
\(\Delta\)ADE đều => AD=ED=AE và ^DAE=^DEA=ADE=600.
Có: AD=BC => AE=BC
Ta có: ^EAC=^DAE+^CAD=\(60^0+\widehat{CAD}\) \(\left(1\right)\)
Xét \(\Delta\)ABC: Cân tại A => ^B=^C= \(\frac{180^0-\widehat{BAC}}{2}=\frac{120^0+60^0-\widehat{BAC}}{2}\)
Thay \(\widehat{BAD}+3\widehat{CAD}=60^0\) và \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\) vào biểu thức trên, ta được:
\(\widehat{ABC}=A\widehat{CB}=\frac{120^0+\widehat{BAD}+3\widehat{CAD}-\left(\widehat{BAD}+\widehat{CAD}\right)}{2}\)
\(=\frac{120^0+2\widehat{CAD}}{2}=\frac{2\left(60^0+\widehat{CAD}\right)}{2}=60^0+\widehat{CAD}\)\(\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{EAC}=\widehat{ACB}=60^0+\widehat{CAD}\)
Xét \(\Delta\)ABC và \(\Delta\)CEA có:
BC=EA
^ACB=^EAC \(\Rightarrow\Delta ABC=\Delta CEA\left(c.g.c\right)\)
AC chung
\(\Rightarrow AB=CE\)(2 cạnh tương ứng). Mà \(AB=AC\Rightarrow AC=CE\)
Xét \(\Delta\)ADC và \(\Delta\)EDC có:
AD=ED
DC chung \(\Rightarrow\Delta ADC=\Delta EDC\left(c.c.c\right)\)
AC=EC
\(\Rightarrow\widehat{ACD}=\widehat{ECD}=\frac{1}{2}\widehat{ECA}\)(2 góc tương ứng). Mà \(\Delta ABC=\Delta CEA\)(cmt)
\(\Rightarrow\widehat{BAC}=\widehat{ECA}\)(2 góc tương ứng) \(\Rightarrow\widehat{ACD}=\frac{1}{2}\widehat{BAC}=\frac{1}{2}\left(\widehat{BAD}+\widehat{CAD}\right)=\frac{\widehat{BAD}+\widehat{CAD}}{2}\)
Hay \(\widehat{DCA}=\frac{\widehat{BAD}+\widehat{CAD}}{2}\).
Còn 3 cách nữa ! :v
* Cách 2:
Trên nửa mặt phẳng bờ BC chứa điểm A, dựng \(\Delta\)BCF đều.
=> BF=CF=BC và ^BFC=^FBC=^FCB=600.
AD=BC => AD=CF.
Ta có: \(\widehat{ABC}=\widehat{ACB}=\frac{180^0-\widehat{BAC}}{2}=\frac{3.60^0-\left(\widehat{BAD}+\widehat{CAD}\right)}{2}\)
\(=\frac{3.\left(\widehat{BAD}+3\widehat{CAD}\right)-\left(\widehat{BAD}+\widehat{CAD}\right)}{2}=\frac{3\widehat{BAD}+9\widehat{CAD}-\left(\widehat{BAD}+\widehat{CAD}\right)}{2}\)
\(=\frac{2\widehat{BAD}+8\widehat{CAD}}{2}=\frac{2\left(\widehat{BAD}+4\widehat{CAD}\right)}{2}=\widehat{BAD}+4\widehat{CAD}\)
Ta có: \(\widehat{FCA}=\widehat{ACB}-\widehat{FCB}=\widehat{ACB}-60^0\)
Thay \(\widehat{ACB}=\widehat{BAD}+4\widehat{CAD}\)và \(\widehat{BAD}+3\widehat{CAD}=60^0\)vào biểu thức trên ta có:
\(\widehat{FCA}=\widehat{BAD}+4\widehat{CAD}-\left(\widehat{BAD}+3\widehat{CAD}\right)=\widehat{CAD}\)\(\Rightarrow\widehat{FCA}=\widehat{CAD}\)
\(\Rightarrow\Delta FAC=\Delta DCA\left(c.g.c\right)\Rightarrow\widehat{FAC}=\widehat{DCA}\)(2 góc tương ứng)
Mà \(\Delta FAB=\Delta FAC\left(c.c.c\right)\Rightarrow\widehat{FAB}=\widehat{FAC}=\frac{\widehat{BAC}}{2}\)
\(\Rightarrow\widehat{FAC}=\widehat{DCA}=\frac{\widehat{BAC}}{2}\Rightarrow\widehat{DCA}=\frac{\widehat{BAD}+\widehat{CAD}}{2}.\)
* Cách 3:
Trên nửa mặt phẳng bờ AB có chứa điểm C, dựng \(\Delta ABI\)đều.
\(\Rightarrow AB=BI=AI\)và \(\widehat{BAI}=\widehat{ABI}=\widehat{AIB}=60^0\)
Mà \(AB=AC\Rightarrow AC=BI\).
Ta có: \(\widehat{CBI}=\widehat{ABC}-\widehat{ABI}=\frac{180^0-\widehat{BAC}}{2}-60^0=\widehat{CAD}\)(C/m tương tự cách 2)
\(\Rightarrow\Delta BCI=\Delta ADC\left(c.g.c\right)\Rightarrow\widehat{CIB}=\widehat{DCA}\)(2 góc tương ứng)
Lại có: \(\widehat{CAI}=\widehat{BAI}-\widehat{BAC}=60^0-\widehat{BAC}=\widehat{BAD}+3\widehat{CAD}-\left(\widehat{BAD}+\widehat{CAD}\right)\)
\(\Leftrightarrow\widehat{CAI}=2\widehat{CAD}\).
\(AC=AB=AI\Rightarrow\Delta CAI\)cân tại A \(\Rightarrow\widehat{ACI}=\widehat{AIC}=\frac{180^0-\widehat{CAI}}{2}=\frac{3.60^0-2\widehat{CAD}}{2}\)
\(\Leftrightarrow\widehat{AIC}=\frac{3.\left(\widehat{BAD}+3\widehat{CAD}\right)-2\widehat{CAD}}{2}=\frac{3\widehat{BAD}+9\widehat{CAD}-2\widehat{CAD}}{2}\)
\(\Leftrightarrow\widehat{AIC}=\frac{3\widehat{BAD}+7\widehat{CAD}}{2}\)
Nhận thấy:
\(\widehat{CIB}=\widehat{AIC}-\widehat{AIB}=\frac{3\widehat{BAD}+7\widehat{CAD}}{2}-60^0=\frac{3\widehat{BAD}+7\widehat{CAD}}{2}-\left(\widehat{BAD}+3\widehat{CAD}\right)\)
\(=\frac{3\widehat{BAD}+7\widehat{CAD}}{2}-\frac{2\widehat{BAD}+6\widehat{CAD}}{2}=\frac{\widehat{BAD}+\widehat{CAD}}{2}\)
\(\Rightarrow\widehat{CIB}=\frac{\widehat{BAD}+\widehat{CAD}}{2}\). Mà \(\widehat{CIB}=\widehat{DCA}\)(cmt) \(\Rightarrow\widehat{DCA}=\frac{\widehat{BAD}+\widehat{CAD}}{2}.\)
* Cách 4:
Trên nửa mặt phẳng bờ AC không chứa điểm B, dựng \(\Delta ACK\)đều.
\(\Rightarrow AC=AK=CK\)và \(\widehat{CAK}=\widehat{ACK}=\widehat{AKC}=60^0\).
Ta có: \(\widehat{DAK}=\widehat{CAD}+\widehat{CAK}=\widehat{CAD}+60^0=\widehat{ABC}\)(c/m tương tự cách 1 ở câu trả lời trước)
\(\Rightarrow\Delta AKD=\Delta BAC\left(c.g.c\right)\)\(\Rightarrow\widehat{BAC}=\widehat{AKD}\)(2 góc tương ứng)
\(\Rightarrow\widehat{AKD}=\widehat{BAD}+\widehat{CAD}\).
\(AC=KD\)( 2 cạnh tương ứng) \(\Rightarrow KD=KC\Rightarrow\Delta DKC\)cân tại K
Lại có: \(\widehat{DKC}=\widehat{AKC}-\widehat{AKD}=60^0-\left(\widehat{BAD}+\widehat{CAD}\right)\)
\(=\widehat{BAD}+3\widehat{CAD}-\left(\widehat{BAD}+\widehat{CAD}\right)=2\widehat{CAD}\)\(\Rightarrow\widehat{DKC}=2\widehat{CAD}\)
\(\Delta DKC\)cân tại K (cmt) \(\Rightarrow\widehat{KDC}=\widehat{KCD}=\frac{180^0-\widehat{DKC}}{2}=\frac{3.60^0-2\widehat{CAD}}{2}\)
\(=\frac{3\widehat{BAD}+9\widehat{CAD}-2\widehat{CAD}}{2}=\frac{3\widehat{BAD}+7\widehat{CAD}}{2}\)
\(\widehat{DCA}=\widehat{KCD}-\widehat{ACK}=\frac{3\widehat{BAD}+7\widehat{CAD}}{2}-60^0=\frac{3\widehat{BAD}+7\widehat{CAD}}{2}-\left(\widehat{BAD}+3\widehat{CAD}\right)\)
\(\Rightarrow\widehat{DCA}=\frac{3\widehat{BAD}+7\widehat{CAD}}{2}-\frac{2\widehat{BAD}+6\widehat{CAD}}{2}=\frac{\widehat{BAD}+\widehat{CAD}}{2}\)
\(\Rightarrow\widehat{DCA}=\frac{\widehat{BAD}+\widehat{CAD}}{2}.\)