cho hình vuông ABCD , M là trung điểm AB. Trên cạnh DC và BC lấy lần lượt hai điểm P và N sao cho MN // AP và góc PON = 450 ( O là giao điểm hai dường chéo AC và BD ) . CHỨNG MINH RẰNG : tam giác DOP đồng dạng với tam giác BNO.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
△AOE và △BOG có:
\(AO=BO\) (O là tâm hình vuông ABCD).
\(AE=BG\)
\(\widehat{OAE}=\widehat{OBG}=45^0\)
\(\Rightarrow\)△AOE=△BOG (c-g-c).
\(\Rightarrow OE=OG;\widehat{AOE}=\widehat{BOG}\)
Mà \(\widehat{AOE}+\widehat{BOE}=90^0\) \(\Rightarrow\widehat{GOE}=\widehat{BOG}+\widehat{BOE}=90^0\)
\(\Rightarrow\)△OGE vuông cân tại O.
a: Xét tứ giác BMDN có
BM//DN
BM=DN
Do đó: BMDN là hình bình hành
Gọi P là giao của BN với EH; Q là giao của MN với HF; K là giao của MN với EF
Ta có
\(EH\perp BC;AI\perp BC\)=> EH//AI \(\Rightarrow\frac{PE}{NA}=\frac{PH}{NI}\) (Talet) \(\Rightarrow\frac{PE}{PH}=\frac{NA}{NI}=1\Rightarrow PE=PH\)
=> BN đi qua trung điểm P của EH
Ta có
EF//BC (gt) => KF//HM \(\Rightarrow\frac{QK}{QM}=\frac{QF}{QH}=\frac{KF}{HM}\) (Talet) => KH//FM
Xét tứ giác KFMH có
KF//HM; KH//FM => KFMH là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
=> KF=HM (Trong hình bình hành các cạnh đối bằng nhau)
\(\Rightarrow\frac{QF}{QH}=\frac{KF}{HM}=1\Rightarrow QF=QH\)
=> MN đi qua trung điểm Q của HF