cho O là 1 điểm trong HCN ABCD nối o với 4 điểm a,b,c,d tính S OBC,biết các S các hình tam giác còn lại là OAB,OAD,OCD lần lượt là 14cm2,10cm2,18cm2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
diện tích hình tam giác obc là : (10 + 14 +18 ) : 2 +1 = 22 (cm2)
Đáp số : 22 cm2
- Giải
- Diện tích tam giác OBC là:
- (14+10+18) : 2+1=22 cm2
Trong hình chữ nhật ABCD gọi chiều cao ứng với các tam giác OAB,OBC,ODC,OAD lần lượt là \(h_1,h_2,h_3,h_4\)
Với mọi \(O\in ABCD\)có \(S_{OAB}+S_{ODC}=\frac{AB.h_1}{2}+\frac{CD.h_3}{2}=\frac{AB\left(h_1+h_2\right)}{2}=\frac{1}{2}S_{ABCD}\)
Vì AB = CD
Tương tự ta có \(S_{ADO}+S_{OBC}=\frac{AD\left(h_2+h_4\right)}{AB}=\frac{AD.BC}{2}=\frac{1}{2}S_{ABCD}\)
Vậy \(S_{OAB}+S_{ODC}=S_{ADO}+S_{OBC}\)
\(14+18=10+S_{OBC}\)
\(\Rightarrow....\)
obc = 22