Cho tam giác ABC cân tại A, cho AH.Kẻ HP vuông góc với AB,HP vuông góc với AC. a.Chứng minh tam giác AHP=tam giác AHQ? b.Chứng minh PQ//BC? c.Gọi E là giao điểm của tia AB và tia QH. Chứng minh BP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔBAC cân tại A
mà AH là đường cao
nên AH là phân giác của góc BAC
Xét ΔAPH vuông tại P và ΔAQH vuông tại Q có
AH chung
góc PAH=góc QAH
=>ΔAPH=ΔAQH
b: Xét ΔABC có AP/AB=AQ/AC
nên PQ//BC
a: ΔBAC cân tại A
mà AH là đường cao
nên AH là phân giác của góc BAC
Xét ΔAPH vuông tại P và ΔAQH vuông tại Q có
AH chung
góc PAH=góc QAH
=>ΔAPH=ΔAQH
b: Xét ΔABC có AP/AB=AQ/AC
nên PQ//BC
\(a)\)xét\(\Delta ABH\)và\(\Delta ACH\)có:
\(\widehat{AHC}=\widehat{AHB}=90^o\)(vì\(AH\)là đường cao của \(\Delta ABC\))
\(AB=AC\)(vì \(\Delta ABC\)cân)
\(\widehat{ABC}=\widehat{ACB}\)(vì\(\Delta ABC\)cân)
\(\Rightarrow\Delta ABH=\Delta ACH\)
\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)(2 cạnh tương ứng)
Xét \(\Delta AHP\)và\(\Delta AHQ\)có:
\(AH\)chung
\(\widehat{APH}=\widehat{AQH}=90^o\)(vì\(HP\perp AB\equiv P\)và \(HQ\perp AC\equiv Q\))
\(\widehat{BAH}=\widehat{CAH}\)(chứng minh trên)
\(\Rightarrow\Delta AHP=\Delta AHQ\)(cạnh huyền-góc nhọn)
\(b)\)Gọi giao điểm của PQ và AH là I
Xét \(\Delta AIP\)và \(\Delta AIQ\)có:
\(\widehat{BAH}=\widehat{CAH}\)(vì\(\Delta AHB=\Delta AHC\))
\(AI\)chung
\(AP=AQ\)(vì \(\Delta AHP=\Delta AHQ\))
\(\Rightarrow\Delta AIP=\Delta AIQ\)(c.g.c)
\(\Rightarrow\widehat{AIP}=\widehat{AIQ}\)(2 cạnh tương ứng)
Mà\(\widehat{AIP}+\widehat{AIQ}=180^o\)(vì kề bù)
\(\Rightarrow\widehat{AIP}=\widehat{AIQ}=\frac{180^o}{2}\)\(=90^o\)
\(\Rightarrow AH\perp PQ\)
mà\(AH\perp BC\)(vì \(AH\)là đường cao của \(\Delta ABC\))
\(\Rightarrow PQ//BC\)(vì cùng \(\perp AH\))
chúc ngươi học tốt !
a) Xét tam giác AHB vuông tai H và tam giác AHC vuông tại H có
AH chung
AB=AC(2 cạnh bên của tam giác ABC cân)
Do đó tam giác AHB=tam giác AHC ( cạnh huyền - cạnh góc vuông)
=> góc BAH = góc CAH ( 2 góc t/ứ)
Xét tam giác AHP vuông tại P và tam giác AHQ vuông tại Q có
AH chung
góc BAH=góc CAH(cmt)
Do đó tam giác vuông AHP=tam giác vuông AHQ(cạnh huyền - góc nhọn)
b)Vì tam giác ABC cân tại A => góc ABC = (180* - góc BAC) :2 (1)
Xét tam giác APQ có AP=AQ( 2cạnh t/ứ của tam giác AHP=tam giác AHQ)
=> tam giác APQ cân tại A ( đ/n tam giác cân)
=> góc APQ = (180* - góc BAC):2 (2)
Từ 1 và 2 => góc APQ = Góc ABC
mà 2 góc này ở vị trí là 2 góc đồng vị
=> PQ // BC
a) Vì HP\(\perp\)AB
=> HPA = 90°
Mà PH = PE
=> PA là trung trực của EH
=> ∆EAH cân tại A
=> AE = AH
=> AEH = AHE
Xét ∆ vuông AEP và ∆ vuông AHP ta có
AE = AH
AP chung
=> ∆AEP = ∆AHP (ch-cgv)
Vì HQ\(\perp\)AC
=> HQA = 90°
Mà HQ = QF
=> AQ là trung trực HF
=> ∆AHF cân tại A
=> ∆AHQ = ∆FAQ (ch-cgv)
b) Vì ∆AHF cân tại A
=> AH = FA
Mà EA = AH
=> EA = AH = FA
=>AH = \(\frac{1}{2}\)FE
=> ∆EHF cân tại H
=> A \(\in\)FE
=> A là trung điểm FE
=> F,E,A thẳng hàng
Bạn ghi lại đề câu c nha
a: ΔBAC cân tại A
mà AH là đường cao
nên AH là phân giác của góc BAC
Xét ΔAPH vuông tại P và ΔAQH vuông tại Q có
AH chung
góc PAH=góc QAH
=>ΔAPH=ΔAQH
b: Xét ΔABC có AP/AB=AQ/AC
nên PQ//BC