K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn ghi lại đề câu c nha

a: ΔBAC cân tại A

mà AH là đường cao

nên AH là phân giác của góc BAC
Xét ΔAPH vuông tại P và ΔAQH vuông tại Q có

AH chung

góc PAH=góc QAH

=>ΔAPH=ΔAQH

b: Xét ΔABC có AP/AB=AQ/AC

nên PQ//BC

a: ΔBAC cân tại A

mà AH là đường cao

nên AH là phân giác của góc BAC
Xét ΔAPH vuông tại P và ΔAQH vuông tại Q có

AH chung

góc PAH=góc QAH

=>ΔAPH=ΔAQH

b: Xét ΔABC có AP/AB=AQ/AC

nên PQ//BC

 

a: ΔBAC cân tại A

mà AH là đường cao

nên AH là phân giác của góc BAC
Xét ΔAPH vuông tại P và ΔAQH vuông tại Q có

AH chung

góc PAH=góc QAH

=>ΔAPH=ΔAQH

b: Xét ΔABC có AP/AB=AQ/AC

nên PQ//BC

 

25 tháng 3 2018

\(a)\)xét\(\Delta ABH\)\(\Delta ACH\)có:

\(\widehat{AHC}=\widehat{AHB}=90^o\)(vì\(AH\)là đường cao của \(\Delta ABC\))

\(AB=AC\)(vì \(\Delta ABC\)cân)

\(\widehat{ABC}=\widehat{ACB}\)(vì\(\Delta ABC\)cân)

\(\Rightarrow\Delta ABH=\Delta ACH\)

\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)(2 cạnh tương ứng)

Xét \(\Delta AHP\)\(\Delta AHQ\)có:

\(AH\)chung

\(\widehat{APH}=\widehat{AQH}=90^o\)(vì\(HP\perp AB\equiv P\)và \(HQ\perp AC\equiv Q\))

\(\widehat{BAH}=\widehat{CAH}\)(chứng minh trên)

\(\Rightarrow\Delta AHP=\Delta AHQ\)(cạnh huyền-góc nhọn)

\(b)\)Gọi giao điểm của PQ và AH là I

Xét \(\Delta AIP\)và \(\Delta AIQ\)có:

\(\widehat{BAH}=\widehat{CAH}\)(vì\(\Delta AHB=\Delta AHC\))

\(AI\)chung

\(AP=AQ\)(vì \(\Delta AHP=\Delta AHQ\))

\(\Rightarrow\Delta AIP=\Delta AIQ\)(c.g.c)

\(\Rightarrow\widehat{AIP}=\widehat{AIQ}\)(2 cạnh tương ứng)

\(\widehat{AIP}+\widehat{AIQ}=180^o\)(vì kề bù)

\(\Rightarrow\widehat{AIP}=\widehat{AIQ}=\frac{180^o}{2}\)\(=90^o\)

\(\Rightarrow AH\perp PQ\)

\(AH\perp BC\)(vì \(AH\)là đường cao của \(\Delta ABC\))

\(\Rightarrow PQ//BC\)(vì cùng \(\perp AH\))

chúc ngươi học tốt !

1 tháng 5 2019

ko ai làm ý c à

mình đang cần bạn nào giúp mình với

27 tháng 4 2017

a) Xét tam giác AHB vuông tai H và tam giác AHC vuông tại H có

AH chung

AB=AC(2 cạnh bên của tam giác ABC cân)

Do đó tam giác AHB=tam giác AHC ( cạnh huyền - cạnh góc vuông)

=> góc BAH = góc CAH ( 2 góc t/ứ)

Xét tam giác AHP vuông tại P và tam giác AHQ vuông tại Q có

AH chung

góc BAH=góc CAH(cmt)

Do đó tam giác vuông AHP=tam giác vuông AHQ(cạnh huyền - góc nhọn)

b)Vì tam giác ABC cân tại A => góc ABC = (180* - góc BAC) :2 (1)

Xét tam giác APQ có AP=AQ( 2cạnh t/ứ của tam giác AHP=tam giác AHQ)

=> tam giác APQ cân tại A ( đ/n tam giác cân)

=> góc APQ = (180* - góc BAC):2 (2)

Từ 1 và 2 => góc APQ = Góc ABC

mà 2 góc này ở vị trí là 2 góc đồng vị

=> PQ // BC

a) Vì HP\(\perp\)AB 

=> HPA = 90° 

Mà PH = PE

=> PA là trung trực của EH 

=> ∆EAH cân tại A 

=> AE = AH 

=> AEH = AHE 

Xét ∆ vuông AEP và ∆ vuông AHP ta có

AE = AH 

AP chung 

=> ∆AEP = ∆AHP (ch-cgv)

Vì HQ\(\perp\)AC 

=> HQA = 90° 

Mà HQ = QF 

=> AQ là trung trực HF 

=> ∆AHF cân tại A 

=> ∆AHQ = ∆FAQ (ch-cgv)

b) Vì ∆AHF cân tại A 

=> AH = FA 

Mà EA = AH 

=> EA = AH = FA 

=>AH = \(\frac{1}{2}\)FE 

=> ∆EHF cân tại H 

=> A \(\in\)FE 

=> A là trung điểm FE 

=> F,E,A thẳng hàng