Tìm mọi cặp số nguyên dương x,y thỏa mãn
\(x^4+\left(x+1\right)^4=y^2+\left(y+1\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cô Huyền giải nhầm rồi.
\(\left(x+1\right)^4-\left(y+1\right)^2=y^2-x^4\)
\(\Leftrightarrow y^2+\left(y+1\right)^2=x^4+\left(x+1\right)^4\)
\(\Leftrightarrow y^2+y=x^4+2x^3+3x^2+2x\)
\(\Leftrightarrow y^2+y+1=\left(x^2+x\right)^2+2\left(x^2+x\right)+1=\left(x^2+x+1\right)^2\)là số chính phương
Xét \(y\ge0\)
\(\Rightarrow y^2< y^2+y+1\le\left(y+1\right)^2\)
\(\Rightarrow y^2+y+1=\left(y+1\right)^2\)
\(\Leftrightarrow y=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Tương tự cho trường hợp còn lại
\(\left(x+1\right)^4-\left(y+1\right)^2=y^2-x^4\)
\(\Leftrightarrow x^4+2x^2+1-y^2-2y-1=y^2-x^4\)\(\Leftrightarrow2x^4+2x^2-2y^2-2y=0\)
\(\Leftrightarrow x^4+x^2-y^2-y=0\Leftrightarrow\left(x^4-y^2\right)+\left(x^2-y\right)=0\)
\(\Leftrightarrow\left(x^2-y\right)\left(x^2+y+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-y=0\\x^2+y+1=0\end{cases}}\)
TH1: y = x2 . Vậy ta có cặp (x;y) thỏa mãn là (k; k2) (k là số nguyên)
TH2: y = - x2 - 1. Vậy ta có cặp (x;y) thỏa mãn là (k; - k2 - 1) (k là số nguyên)
Bài 1 :
Phương trình <=> 2x . x2 = ( 3y + 1 ) 2 + 15
Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)
\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)
( Vì số chính phương chia 3 dư 0 hoặc 1 )
\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)
Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)
Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0
Vậy ta có các trường hợp:
\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)
\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)
Vậy ( x ; y ) =( 2 ; 0 )
Bài 3:
Giả sử \(5^p-2^p=a^m\) \(\left(a;m\inℕ,a,m\ge2\right)\)
Với \(p=2\Rightarrow a^m=21\left(l\right)\)
Với \(p=3\Rightarrow a^m=117\left(l\right)\)
Với \(p>3\)nên p lẻ, ta có
\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\) \(\left(k\inℕ,k\ge2\right)\)
Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)
\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)
Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)
Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý
\(\rightarrowĐPCM\)
mọi người t ủng hộ mk nha