Cho x, y thỏa mãn -6/9 = x/15 = 14/y . Tổng lập phương x^3 + y^3 = ......
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình gợi ý nha:
Bạn tính x từ phép tính 3.x3+7=199 (bằng 4)
Rồi bạn tính (x+10)/7 (bằng 2)
Từ đó ta có y+6=18 và 27-z=22
Tính y;z
Tính x+y+z.
1) Quy luật cứ mũ chẵn 2 số tận cùng là 01 còn mũ lẻ thì 2 số tận cùng là 51
Vậy 2 số tận cùng của 51^51 là 51
2)pt<=> x-2=0 hoặc (x-2)^2=1 <=> x=2 hoặc x=1 hoặc x=3
Vậy trung bìng cộng là 2
4)Pt<=> (x-7)^(x+1)=0 hoặc 1-(x-7)^10=0=> x=7 hoặc x=8 hoặc x=6
Do x là số nguyên tố => x=7 TM
5)3y=2z=> 2z-3y=0
4x-3y+2z=36=> 4x=36=> x=9
=> y=2.9=18=> z=3.18/2=27
=> x+y+z=9+18+27=54
6)pt<=> x^2=0 hoặc x^2=25 <=> x=0 hoặc x=-5 hoặc x=5
7)pt<=> (3x+2)(5x+1)=(3x-1)(5x+7)
Nhân ra kết quả cuối cùng là x=3
8)ta có (3x-2)^5=-243=-3^5
=> 3x-2=-3 => x=-1/3
9)Câu này chưa rõ ý bạn muốn hỏi!
10)2x-3=4 hoặc 2x-3=-4
<=> x=7/2 hoặc x=-1/2
11)x^4=0 hoặc x^2=9
=> x=0 hoặc x=-3 hoặc x=3
Cho đáp án:
1/ x = -1
2/ x = -10; y = -6
3/ 9 phần tử
4/ = 6
5/ Không chắc
Nhớ kiểm tra lại hộ
bài của Never_NNL sai nhé:
\(x+y=m+n\) \(\Rightarrow\)\(n=x+y-m\)
Ta có: \(A=x^2+y^2+m^2+n^2\)
\(=x^2+y^2+m^2+\left(x+y-m\right)^2\)
\(=2x^2+2y^2+2m^2+2xy-2mx-2my\)
\(=\left(x^2+2xy+y^2\right)+\left(x^2-2mx+m^2\right)+\left(y^2-2my+m^2\right)\)
\(=\left(x+y\right)^2+\left(x-m\right)^2+\left(y-m\right)^2\)
Vậy A là tổng của 3 số chính phương
x + y = m + n
m = x + y - n
x^2 + y^2 + ( x + y - n )^2 + n^2
= x^2 + y^2 + ( x^2 + xy- xn ) + ( xy + y^2 - ny ) - [ ( - xn ) + ( - ny ) + n^2 ] + n^2
= x^2 + y^2 + x^2 + xy - xn + xy + y^2 - ny + xn + ny - n^2 + n^2
= 2x^2 + 2y^2 + 2xy
= x^2 + y^2 + ( x^2 + y^2 + 2xy )
= x^2 + y^2 + ( x + y )^2 ( dpcm )
Ta có \(y< z\)
=> \(x+y< x+z\)(1)
và \(x< y\)
=> \(x+z< y+z\)(2)
Từ (1) và (2) => \(x+y< x+z< y+z\)
Theo đề bài, ta có:\(\frac{x+y}{9}=\frac{x+z}{12}=\frac{y+z}{13}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x+y}{9}=\frac{x+z}{12}=\frac{y+z}{13}=\frac{2\left(x+y+z\right)}{9+12+13}=\frac{2.51}{34}=\frac{102}{34}=3\)(*)
=> \(x+y=27\)
và \(x+y=51-z\)
=> \(51-z=27\)
=> \(z=24\)
(*) => \(x+z=36\)
và \(x+z=51-y\)
=> \(51-y=36\)
=> \(y=15\)
Ta lại có: \(x=51-\left(y+z\right)\)
=> \(x=51-\left(15+24\right)\)
=> \(x=51-39=12\)
Ta có:
\(-\frac{6}{9}=\frac{x}{15}=\frac{14}{y}\)
Từ \(\frac{x}{15}=-\frac{6}{9}\Rightarrow9x=-90\Rightarrow x=-10\)
Từ \(-\frac{10}{15}=\frac{14}{y}\Rightarrow-10y=210\Rightarrow y=-21\)
\(x=-10,y=-21\Rightarrow x^3+y^3=\left(-10\right)^3+\left(-21\right)^3=-10261\)