Cho ABC là một tam giác nhọn và M là trung điểm của canh BC.
a) Biết rằng \(\widehat{MAB}>\widehat{MAC}\), chứng minh rằng \(AC>AB\).
b) Biết rằng \(AC>AB\), chứng minh rằng \(\widehat{MAB}>\widehat{MAC}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HD : xét 2 góc DAC và góc BAE
^DAB+^BAC=^DAC
^CAE+^BAC=^BAE
^DAB=^CAE=90o
=> ^DAC=^BAE
sau đó cm \(\Delta DAC=\Delta BAE\)=> câu a
b) cm DKE =90o
2 câu c ; d dễ tự làm!
Tam giác ABC có M là trung điểm của BC
a) Biết góc MAB>góc MAC. Chứng Minh :AC>AB
b) Biết AC > AB chứng minh góc MAB > góc MAC
ain tích min tích lại
a: TRên tia đối của tia MA, lấy K sao cho M là trung điểm của AK
Xét tứ giác ABKC có
M là trung điểm chung của AK và BC
=>ABKC là hình bình hành
=>AB//KC và AB=KC
=>góc BAM=góc CKA
mà góc BAM>góc MAC
nên góc CKA>góc CAK
=>CA>CK
=>CA>AB
b:
TRên tia đối của tia MA, lấy K sao cho M là trung điểm của AK
Xét tứ giác ABKC có
M là trung điểm chung của AK và BC
=>ABKC là hình bình hành
=>AB//KC và AB=KC
=>AC>KC
=>góc CKA>góc CAK
=>góc MAB>góc MAC