K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2017

tk ủng hộ mk nha mọi người

1 tháng 10 2021

Tham khảo:

1) Giải phương trình : \(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\) - Hoc24

 

1 tháng 10 2021

ghê thậc, còn cái còn lại thì seo?

3 tháng 9 2016

b) cách khác:

\(pt\Leftrightarrow11-x-4\sqrt{x+3}-2\sqrt{3-2x}=0\)

\(\Leftrightarrow3-2x-2\sqrt{3-2x}+1+x+3-4\sqrt{x+3}+4=0\)

\(\Leftrightarrow\left(\sqrt{3-2x}-1\right)^2+\left(\sqrt{x+3}-2\right)^2=0\)

\(\Leftrightarrow\sqrt{3-2x}-1=\sqrt{x+3}-2=0\)

\(\Leftrightarrow x=1\)

3 tháng 9 2016

b liên hợp hoặc cosi, đặt ẩn cx đc

23 tháng 7 2020

Cộng 2 phương trình lại 
VT có:\(\sqrt{x}+\sqrt{32-x}\le8;\sqrt[4]{x}+\sqrt[4]{32-x}\le4\) nên VT\(\le\)12
VP có:\(y^2-6y+21=\left(y-3\right)^2+12\ge12\)
Nghiệm \(x=16;y=3\)

23 tháng 7 2020

điều kiện: 0=<x =< 32

hệ đã cho tương đương với: \(\hept{\begin{cases}\left(\sqrt{x}+\sqrt{32-x}\right)+\left(\sqrt[4]{x}+\sqrt[4]{32-x}\right)=y^2-6y+21\\\sqrt{x}+\sqrt[4]{32-x}=y^2-3\end{cases}}\)

theo bất đẳng thức Bunhiacopsky ta có:

\(\left(\sqrt{x}+\sqrt{32-x}\right)^2\le\left(1^2+1^2\right)\left(x+32-x\right)=64\)

\(\Rightarrow\sqrt{x}+\sqrt{32-x}\le8\)

\(\left(\sqrt[4]{x}+\sqrt[4]{32-x}\right)^4\le\left[2\left(\sqrt{x}+\sqrt{32-x}\right)\right]^2\le256\Rightarrow\sqrt[4]{x}+\sqrt[4]{32-x}\le4\)

\(\Rightarrow\left(\sqrt{x}+\sqrt{32-x}\right)+\left(\sqrt[4]{x}+\sqrt[4]{32-x}\right)\le12\)

mặt khác \(y^2-6y+21=\left(y-3\right)^2+12\ge12\)

đẳng thức xảy ra khi x=16 và y=3 (tm)

24 tháng 6 2015

Điều kiện: x\(\ge\) -3

PT <=>  \(\left(\sqrt{x+8}+\sqrt{x+3}\right)\left(\sqrt{x+8}-\sqrt{x+3}\right)\left(\sqrt{x^2+11x+24}+1\right)=5\left(\sqrt{x+8}+\sqrt{x+3}\right)\)

<=> \(\left(x+8-x-3\right)\left(\sqrt{x^2+11x+24}+1\right)=5\left(\sqrt{x+8}+\sqrt{x+3}\right)\)

<=> \(\sqrt{\left(x+3\right)\left(x+8\right)}+1=\sqrt{x+8}+\sqrt{x+3}\)

<=>   \(\left(\sqrt{\left(x+3\right)\left(x+8\right)}-\sqrt{x+8}\right)+\left(1-\sqrt{x+3}\right)=0\)

<=> \(\left(1-\sqrt{x+8}\right).\left(1-\sqrt{x+3}\right)=0\)

<=>  \(\sqrt{x+8}=1\) hoặc \(\sqrt{x+3}=1\)

<=> x+ 8 = 1 hoặc x + 3 = 1

<=> x = -7 hoặc x = - 2

Đối chiếu Đk => x = - 2 là nghiệm của PT