cho a b c d thuộc z thỏa mãn a+b=c+d và a^2+b^2=c^2+d^2 CMR a^2014+b^2014=c^2014+d^2014
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
YN
2 tháng 7 2021
\(b)\)
\(4n-3⋮3n-2\)
\(\Leftrightarrow3\left(4n-3\right)⋮3n-2\)
\(\Leftrightarrow12n-9⋮3n-2\)
\(\Leftrightarrow\left(12n-8\right)-1⋮3n-2\)
\(\Leftrightarrow4\left(3n-2\right)-1⋮3n-2\)
\(\Leftrightarrow1⋮3n-2\)
\(\Leftrightarrow3n-2\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow3n\in\left\{1;3\right\}\)
Mà: \(3n⋮3\)
\(\Leftrightarrow3n=3\)
\(\Leftrightarrow n=1\)
Ta có: a2 + b2 = c2 + d2
=> a2 - c2 = d2 - b2
=> (a - c)(a + c) = (d - b)(d + b)
Mà a + b = c + d
=> a - c = d - b
+) Nếu a = c
=> a - c = d - b = 0
=> d = b
=> a2014 = c2014 và d2014 = b2014
=> a2014 + b2014 = c2014 + d2014 (1)
+) Nếu a \(\ne\) c
=> a - c = d - b (khác 0)
=> d \(\ne\) b
Có (a - c)(a + c) = (d - b)(d + b)
=> a + c = d + c (2)
Mà a + b = c + d (3)
Lấy (2) + (3) ta được:
2a + b + c = 2d + b + c
=> 2a = 2d
=> a = d
=> c = b
=> a2014 = d2014 và c2014 = b2014
=> a2014 + b2014 = c2014 + d2014 (4)
Kết hợp (1) và (4) ta được: a2014 + b2014 = c2014 + d2014 (ĐPCM)