từ điểm A bên ngoài đường tròn tâm O ban kinh R.Vẽ hai tiếp tuyến Ab,AC của đường tròn (B,C là tiếp điểm) .M là điểm bất kỳ trên cung nhỏ BC . vẽ MH vuong góc với BC, MI vuong góc với AB, MK vuông góc với AC
1) cm tứ giac BIMH nội tiếp va tứ giác CKMH nội tiếp
2) chứng minh góc MIH = góc MHK và MH^2=MI.MK
3)gọi D là giao điểm của BM và IH, E là giao điểm của CM va KH
cm DE vuông góc với MH
1) Xét (o) có :
Tiếp tuyến AB (o) => góc OBA =90(theo tính chất tiếp tuyến của đường tròn)
Tiếp tuyến AC(O)=> góc OCA =90 (theo trên)
xét tứ giác ABOC có:
góc OBA+góc OCA =180 (cmt)
=> tứ giác ABOC là tứ giác nt (dhnb)
Mặt khác : MH vuông góc với BC (theo đề bài )=>góc BHM =90
MI vuông góc với AB (theo đề bài )=>góc BIM = 90
Xét tứ giác BIMH có:
góc BHM+BIM=180 (cmt)
=>tứ giác BIMH là tứ giác nt
2) theo hệ thức lượng áp dụng vào tam giác HIK ta có :
MH^2=MI . MK
3)
CM góc thì mình không biết đâu nhé!