s=\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+....+\frac{1}{1+2+3+..+n}\)cmr s<2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Tính C
\(C=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+....+\frac{n-1}{n!}\)
\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{n-1}{n!}\)
\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\)
\(=1-\frac{1}{n!}\)
3) a) Ta có : \(P=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}\)
\(=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{199}+\frac{1}{200}\left(đpcm\right)\)
a, Chắc xét hàm số tổng quát!
Xét hàm số tổng quát:
\(\dfrac{1}{\left(k+1\right)\sqrt{k}}=\dfrac{\sqrt{k}}{k\left(k+1\right)}=\sqrt{k}\left(\dfrac{1}{k\left(k+1\right)}\right)\)
\(=\sqrt{k}\left[\sqrt{\dfrac{1}{k}}^2-\sqrt{\dfrac{1}{k+1}}^2\right]\)
\(=\sqrt{k}\left(\dfrac{1}{\sqrt{k}}+\dfrac{1}{\sqrt{k+1}}\right)\left(\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\right)\)
\(=\left(1+\dfrac{\sqrt{k}}{\sqrt{k+1}}\right)\left(\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\right)\)
Vì \(\dfrac{\sqrt{k}}{\sqrt{k+1}}< 1\Rightarrow1+\dfrac{\sqrt{k}}{\sqrt{k+1}}< 2\)
Do đó \(\left(1+\dfrac{\sqrt{k}}{\sqrt{k+1}}\right)\left(\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\right)< 2.\left(\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\right)\)
\(\Rightarrow\dfrac{1}{\left(k+1\right)\sqrt{k}}< 2\left(\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\right)\) (1)
Áp dụng điểu (1) ta được:
\(\dfrac{1}{2}< 2\left(\dfrac{1}{1}-\dfrac{1}{\sqrt{2}}\right)\)
\(\dfrac{1}{3\sqrt{2}}< 2\left(\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}\right)\)
...................................
\(\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)\)
\(\Rightarrow\dfrac{1}{2\sqrt{1}}+\dfrac{1}{3\sqrt{2}}+....+\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\dfrac{1}{1}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+....+\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)\)
\(\Rightarrow\dfrac{1}{2\sqrt{1}}+\dfrac{1}{3\sqrt{2}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\left(1-\dfrac{1}{\sqrt{n+1}}\right)\)
Với mọi giá trị của \(n>0\) ta luôn có: \(\sqrt{n+1}>0\)
Do đó \(\dfrac{1}{2\sqrt{1}}+\dfrac{1}{3\sqrt{2}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\) (đpcm)
b)
program hotrotinhoc;
var s: real;
i,n: byte;
function t(x: byte): longint;
var j: byte;
t1: longint;
begin
t1:=1;
for j:=1 to x do
t1:=t1*j;
t1:=t;
end;
begin
readln(n);
s:=0;
for i:=1 to n do
s:=s+1/t(i);
write(s:1:2);
readln
end.
c) Đề em ghi sai rồi thế này với đúng :
\(T=1+\frac{2}{2^2}+\frac{3}{3^2}+\frac{4}{4^2}+...+\frac{n}{n^2}\)
program hotrotinhoc;
var t: real;
n,i: byte;
begin
readln(n);
t:=0;
for i:=1 to n do
t:=t+i/(i*i);
write(t:1:2);
readln
end.