K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2016

Đặt A=\(\frac{1}{3}.5+\frac{1}{5}.7+...+\frac{1}{97}.99\)

=>A=\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

=>2A=\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)

=>2A=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)

=>2A=\(\frac{1}{3}-\frac{1}{99}=\frac{33}{99}-\frac{1}{99}=\frac{32}{99}\)

=>A=\(\frac{32}{99}:2=\frac{32}{99}.\frac{1}{2}=\frac{32}{198}=\frac{16}{99}\)

13 tháng 11 2018

????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

28 tháng 11 2018

đéo biết ?

DD
28 tháng 3 2022

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\right)\)

\(2A=1-\frac{1}{3^{100}}\)

\(A=\frac{1}{2}-\frac{1}{2.3^{100}}\)

22 tháng 3 2018

Đặt  A  =\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\)    

Ta có \(3A=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}\)

           \(A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\)

     => \(2A=3A-A=3-\frac{1}{3^{2005}}\)

   => \(A-\frac{3-\frac{1}{3^{2005}}}{2}\)

16 tháng 12 2019

\(S=1+2+2^2+2^3+...+2^{62}+2^{63}\)

\(2S=2\left(1+2+2^2+2^3+...+2^{62}+2^{63}\right)\)

\(2S=2+2^2+2^3+2^4+...+2^{63}+2^{64}\)

\(2S-S=\left(2+2^2+2^3+2^4+...+2^{63}+2^{64}\right)-\left(1+2+2^2+2^3+...+2^{62}+2^{63}\right)\)

\(S=2^{64}-1\)

16 tháng 12 2019

Bài toán làm theo kiểu 2.S là được nếu là 3x thì sử dụng 3.S. Tương tự như vậy

Ta có: 1 + 2 + 22 + 23 +...+ 262 + 263

\(\Rightarrow\) 2.(1 + 2 + 22 + 23 +...+ 262 + 263) trừ (1 + 2 + 22 + 23 +...+ 262 + 263) = 1 + 2 + 22 + 23 +...+ 262 + 263

= (2 + 22 + 23 + 24 +...+ 263 + 264) trừ (1 + 2 + 22 + 23 +...+ 262 + 263)

(Sử dụng phương pháp chịt tiêu: (là thế này nè)

 (2 + 22 + 23 + 24 +...+ 263 + 264) trừ (1 + 2 + 22 + 23 +...+ 262 + 263)

Còn lại 264 trừ 1)

= 264 trừ 1

Vậy S = 264 trừ 1