K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2021

Đặt\(\frac{x}{2019}=\frac{y}{2020}=\frac{z}{2021}=k\Rightarrow\hept{\begin{cases}x=2019k\\y=2020k\\z=2021k\end{cases}}\)

Khi đó (x -  y)2 = (2019k - 2020k)2 = (-k)2 = k2 (1)

\(\frac{\left(x-z\right)\left(y-z\right)}{2}=\frac{\left(2019k-2021k\right)\left(2020k-2021k\right)}{2}=\frac{\left(-2k\right).\left(-k\right)}{2}=\frac{2k^2}{2}=k^2\)(2)

Từ (1) và (2) => đpcm

16 tháng 7 2021

Cảm ơn bạn

4 tháng 6 2021

/\(2020\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{y^2+z^2}+\dfrac{1}{x^2+y^2}\right)ápdụngBDT\)

\(\dfrac{1}{x^2+y^2}+\dfrac{1}{y^2+z^2}+\dfrac{1}{x^2+z^2}\ge\dfrac{9}{2\left(x^2+y^2+z^2\right)}=\dfrac{9}{2\cdot2020}\)

\(ápdụngBĐTcosi\)

\(x^3+y^3+z^3\ge3xyz\)

\(\)=> VP\(\ge\) 9/2

28 tháng 3 2023

x=1 , y= 2

28 tháng 3 2023

2019.\(x^2\) + y2 = 2023

Dùng phương pháp đánh giá tìm nghiệm nguyên em nhé.

Vì \(x\), y \(\in\) Z+ => \(x\); y ≥ 1

Với \(x\) = 1; y = 1 => 2019.12 + 12 = 2020 (loại)

Với \(x\) = 1; y = 2 => 2019.12 + 22 = 2023 ( thỏa mãn)

Với \(x\) > 1; y > 2 => 2019.\(x\) + y > 2019.12 + 22 = 2023

Vậy \(x\) = 1; y = 2 là  nghiệm nguyên duy nhất thỏa mãn đề bài.

Kết luận: (\(x\); y) =( 1; 2)

 

AH
Akai Haruma
Giáo viên
26 tháng 11 2021

Lời giải:
Nếu $x\geq 1$ thì $2^x$ chẵn

$\Rightarrow 2^x+5999$ lẻ

$\Rightarrow 4y$ lẻ (vô lý)

Do đó $x<1$. Mà $x$ tự nhiên nên $x=0$

$4y=2^x+5999=2^0+5999=6000$

$\Rightarrow y=1500$ 

Vậy $x=0; y=1500$

$(x-1)^{2019}+(y-1501)^{2020}=(0-1)^{2019}+(1500-1501)^{2020}$

$=(-1)+1=0$

11 tháng 3 2020

Bạn hãy dựa vào link này mà tự làm nhé : 

https://olm.vn/hoi-dap/detail/246211413079.html

Bài làm của mình đó !

7 tháng 7 2020

meo hieu haha

19 tháng 12 2019

\(x^2+y^2=6\left(x-y-3\right)\)\(\Rightarrow x^2+y^2-6\left(x-y-3\right)=0\)

\(\Leftrightarrow x^2+y^2-6x+6y+18=0\)\(\Leftrightarrow\left(x^2-6x+9\right)+\left(y^2+6x+9\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y+3\right)^2=0\)(1)

Vì \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\\\left(y+3\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-3\right)^2+\left(y+3\right)^2\ge0\forall x,y\)(2)

Từ (1) và (2) \(\Rightarrow\left(x-3\right)^2+\left(y+3\right)^2=0\Leftrightarrow\hept{\begin{cases}x-3=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-3\end{cases}}\)

\(\Rightarrow M=3^{2019}+\left(-3\right)^{2019}+\left(3-3\right)^{2020}=0\)

19 tháng 12 2019

\(Ta \) \(có : \) \(x ^2 + y^2 = 6. ( x - y - 3 )\)

\(\Leftrightarrow\)\(x^2 + y^2 - 6. ( x - y - 3 ) = 0\)

\(\Leftrightarrow\)\(x^2 + y^2 - 6x + 6y + 18 = 0\)

\(\Leftrightarrow\)\(( x^2 - 6x + 9 ) + ( y^2 + 6y + 9 ) = 0\)

\(\Leftrightarrow\)\(( x - 3 )^2 + ( y + 3 )^2 = 0\)

\(\Leftrightarrow\)\(( x - 3 )^2 = 0 \) \(và \) \(( y - 3 )^2 = 0\)

\(\Leftrightarrow\)\(x - 3 = 0 \) \(và \) \(y + 3 = 0\)

\(\Leftrightarrow\)\(x = 3 \) \(và \) \(y = - 3\)

\(Thay\) \(x = 3 ; y = - 3 \) \(vào \) \(M \)\(ta \) \(được :\)

\(M = 3\)\(2019\) \(+ (- 3 )\)\(2019\) \(+ [ 3 + ( - 3 ) ]\)\(2020\)

\(M = 0 \)