K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2023

\(f\left(x\right)-g\left(x\right)\)

\(=\left(10x^7-8x^5-6x^3+4x+\dfrac{1}{4}\right)-\left(9x^8-7x^6-5x^4+3x^2+\dfrac{3}{4}\right)\)

\(=10x^7-8x^5-6x^3+4x+\dfrac{1}{4}-9x^8+7x^6+5x^4-3x^2-\dfrac{3}{4}\)

\(=-9x^8+10x^7+7x^6-8x^5+5x^4-6x^3-3x^2+4x+\left(\dfrac{1}{4}-\dfrac{3}{4}\right)\)

\(=-9x^8+10x^7+7x^6-8x^5+5x^4-6x^3-3x^2+4x-\dfrac{1}{2}\)

25 tháng 3 2023

lũy thừa tăng dần của biến mà ạ?

5 tháng 5 2021

a) f(x)+g(x) = 2x4 -x3 -2x2+x+4

b) f(x)-g(x) =x3-4x2+x-5

5 tháng 5 2021

x4 là x^4 hả bạn

8 tháng 9 2021

\(e,\left(x-2\right)^2-16=0\\ \Leftrightarrow\left(x-6\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\\ f,x^2-5x-14=0\\ \Leftrightarrow\left(x-7\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ g,8x\left(x-3\right)+x-3=0\\ \Leftrightarrow\left(8x+1\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{8}\\x=3\end{matrix}\right.\)

8 tháng 9 2021

e)\(\left(x-2-4\right)\left(x-2+4\right)=\left(x-6\right)\left(x+2\right)\)

f)\(x^2-5x-14=x^2-2.\dfrac{5}{2}x+\dfrac{25}{2}+\dfrac{3}{2}=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{2}\)

\(\Leftrightarrow4x^2+x-8x-2-4x^2-27x=1\)

=>-34x=3

hay x=-3/34

8 tháng 1 2022

\(\left(x-2\right)\left(4x+1\right)-4x\left(x+7\right)=1\\ \Rightarrow4x^2-8x+x-2-4x^2-28x=1\\ \Rightarrow-35x=3\\ \Rightarrow x=\dfrac{-3}{35}\)

10 tháng 4 2019

f(2)=g(0)

=> c=5

f(1)=g(1)

=> a+b+c=2 mà c=5 => a+b=-3 (1)

f(-1)=g(3)

=>9a+3b+c=2  mà c=5= > 9a+3b=-3=> 3a+b=-1(2)

(2)-(1) ta được:

2a=2=>a=1=> b=-4 

VẬy g(x)=x^2-4x+5

t i ck ủng hộ tui nha

Ta có: \(\left(x^{3n}+y^{3n}\right)\left(x^{3n}-y^{3n}\right)=-x^{6n}-y^{6n}\)

\(\Leftrightarrow x^{6n}-y^{6n}=-x^{6n}-y^{6n}\)

\(\Leftrightarrow n\in\varnothing\)

20 tháng 8 2019

a) Ta có:

f(0) = -2.03 + 3.02 - 0 + 5 = 0 + 0 - 0 + 5 = 5

g(-1) = 2.(-1)3 - 2.(-1)2 + (-1) - 9 = -2 - 2 - 1 - 9 = -14

b) f(x) + g(x) = (-2x3 + 3x2 - x + 5) + (2x3 - 2x2 + x - 9)

                   = -2x3 + 3x2 - x + 5 + 2x3 - 2x2 + x - 9

                  = (-2x3 + 2x3) + (3x2 - 2x2) - (x - x) + (5 - 9)

                 = x2 - 4

f(x) - g(x) = (-2x3 + 3x2 - x + 5) - (2x3 - 2x2 + x - 9)

               = -2x3 + 3x2 - x + 5 - 2x3 + 2x2 - x + 9

              = -(2x3 + 2x3) + (3x2 + 2x2) - (x + x) + (5 + 9)

             = -4x3 + 5x2 - 2x + 14

16 tháng 9 2021

\(D=4x^2-2x+3x\left(x-5\right)=4x^2-2x+3x^2-15x=7x^2-17x=7\left(-1\right)^2-17\left(-1\right)=24\)

\(E=x^{10}-2020x^9+2020x^8-2020x^7+...+2020x^2-2020x=x^9\left(x-2019\right)-x^8\left(x-2019\right)+x^7\left(x-2019\right)-...-x^2\left(x-2019\right)+x\left(x-2019\right)-x=x^9\left(2019-2019\right)-...+x\left(2019-2019\right)-2019=-2019\)

 

16 tháng 9 2021

cảm ơn cậu nhưng có thể cho mk hỏi luôn câu F nữa đc ko ạ

 

NV
31 tháng 8 2021

\(f\left(0\right)=2010\Rightarrow a.0^2+b.0+c=2010\Rightarrow c=2010\)

\(f\left(1\right)=2011\Rightarrow a.1^2+b.1+c=2011\Rightarrow a+b+c=2011\)

\(\Rightarrow a+b+2010=2011\Rightarrow a+b=1\) (1)

\(f\left(-1\right)=2012\Rightarrow a.\left(-1\right)^2+b.\left(-1\right)+c=2012\)

\(\Rightarrow a-b+c=2012\Rightarrow a-b+2010=2012\)

\(\Rightarrow a-b=2\Rightarrow a=b+2\)

Thế vào (1) \(\Rightarrow b+2+b=1\Rightarrow2b=-1\Rightarrow b=-\dfrac{1}{2}\)

\(\Rightarrow a=b+2=-\dfrac{1}{2}+2=\dfrac{3}{2}\)

\(\Rightarrow f\left(x\right)=\dfrac{3}{2}x^2-\dfrac{1}{2}x+2010\)

\(\Rightarrow f\left(-2\right)=\dfrac{3}{2}.\left(-2\right)^2-\dfrac{1}{2}.\left(-2\right)+2010=2017\)