K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi (C): x^2+y^2-2ax-2by+c=0 là PT đường tròn ngoại tiêpΔACB

Theo đề, ta có: 

2^2+(-1)^2-4a+2b+c=0 và 1+4+2a-4b+c=0 và 16+1+8a+2b+c=0

=>-4a+2b+c=-5 và 2a-4b+c=-5 và 8a+2b+c=-17

=>a=-1; b=-1; c=-7

=>x^2+y^2+2x+2y-7=0

=>x^2+2x+1+y^2+2y+1=9

=>(x+1)^2+(y+1)^2=9

27 tháng 8 2018

14 tháng 12 2015

1 -3 A -5 3 B 2 -2 C M

a) Gọi điểm M(x,0). Ta có MA = MB

=> MA2 = MB2

=> (1 - x)2 + (-3 - 0)2 = (3 - x)2 + (-5 - 0)2

    1 - 2x + x2 + 9 = 9 - 6x + x2 + 25

    4x = 24

    x = 6

Vậy điểm M(6, 0)

b) Gọi N(0, y), ta có NA vuông góc với AB

=> Tích vô hướng giữa hai vector AN  và vector AB bằng 0

=> (0 - 1, y + 3) . (3 - 1, -5 + 3) = 0

     -2 - 2(y + 3) = 0

    y = -4

Vậy N(0, -4) 

26 tháng 10 2019

Chọn A.

Gọi AH là đường cao của tam giác ABC ⇒ AH ⊥ BC.

B(4;5), C(-3;2) Đề kiểm tra 15 phút Hình học 10 Chương 3 có đáp án (Đề 1)

Phương trình đường cao AH đi qua A(2;-1) nhận Đề kiểm tra 15 phút Hình học 10 Chương 3 có đáp án (Đề 1) là VTPT là:

7.(x - 2) + 3.(y + 1) = 0 ⇔ 7x - 14 + 3y + 3 = 0 ⇔ 7x + 3y - 11 = 0

Vậy phương trình đường cao AH là 7x + 3y - 11 = 0.

2 tháng 8 2016

  AB (-1,-3) 
AC (3,1) 
BC (4.4) 
Ta co : AB.AC= (-1).(3) + (-3).(1) = 0 
suy ra : tam giac ABC vuong tai A 
S= 1/2.AB.AC 
Ban tu tinh do dai AB, AC nhé

vecto AH=(x+2;y-4); vecto BC=(-6;-2)

vecto BH=(x-4;y-1); vecto AC=(0;-5)

Theo đề, ta có: -6(x+2)-2(y-4)=0 và 0(x-4)-5(y-1)=0

=>y=1 và -6(x+2)=2(y-4)=2*(1-4)=-6

=>x+2=1 và y=1

=>x=-1 và y=1

NV
31 tháng 3 2023

\(\overrightarrow{AB}=\left(4;-3\right)\Rightarrow AB=5\)

\(\overrightarrow{AC}=\left(6;0\right)\Rightarrow AC=6\)

\(\overrightarrow{BC}=\left(2;3\right)\Rightarrow BC=\sqrt{13}\)

Chu vi tam giác: \(AB+AC+BC=11+\sqrt{13}\)

23 tháng 3 2016

sory nha mik mới học lớp 8

6 tháng 4 2016

duong thang di qua BC la y=-1x+7

=> he so can tim la 1

27 tháng 9 2019

NV
31 tháng 3 2023

\(\overrightarrow{AB}=\left(1;-2\right)\Rightarrow AB=\sqrt{5}\)

\(\overrightarrow{AC}=\left(-2;2\right)\Rightarrow AC=2\sqrt{2}\)

\(BC=\left(-3;4\right)\Rightarrow BC=5\)

Chu vi tam giác ABC: \(AB+AC+BC=\sqrt{5}+2\sqrt{2}+5\)