tìm một số có hai chữ số biết rằng chữ số hàng chục kém chữ số hằng đơn vị 4 đơn vị. tổng bình phương hai chữ số của nó bằng 80 tìm số đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi chữ số hàng đơn vị là x
=> chữ số hàng chục là x-4
(x-4)^2 +x^2 =80
=> x=8 hoặc x=-4 (loại)
=> số đó là 48
Lời giải:
Gọi số cần tìm là $\overline{ab}$. ĐK: $a\neq 0; a,b\in\mathbb{N}; a,b\leq 9$
Theo bài ra ta có:
$a+4=b(1)$
$a^2+b^2=80(2)$
Thay $(1)$ vào $(2)$ thì:
$a^2+(a+4)^2=80$
$2a^2+8a+16=80$
$a^2+4a-32=0$
$\Leftrightarrow (a-4)(a+8)=0$
Vì $a\in\mathbb{N}$ nên $a=4$
$b=a+4=8$
Vậy số cần tìm là $48$
Gọi số cần tìm là ab
Theo đề, ta có: a-b=7 và 10a+b=(a+b)^2
=>a=7+b và 10(b+7)+b=(2b+7)^2
=>4b^2+28b+49-11b-70=0 và a=b+7
=>b=1 và a=8
Gọi số tự nhiên cần tìm là \(\overline{ab}\left(a,b\in N;a\ne0\right)\)
Ta có \(b=a-7\)
Mặt khác: \(\overline{ab}=\left(a+b\right)^2\Rightarrow10a+b=\left(a+a-7\right)^2\)
\(\Rightarrow11a-7=\left(2a-7\right)^2\Rightarrow11a-7=4a^2-28a+49\)
\(\Rightarrow4a^2-39a+56=0\Rightarrow\left[{}\begin{matrix}a=1,75\left(L\right)\\a=8\left(TM\right)\end{matrix}\right.\)
Vậy số cần tìm là 81.
Đặt chữ số hàng chục là x thì chữ số hàng đơn vị là x+4. Theo đề bài ta có
\(x^2+\left(x+4\right)^2=80\Leftrightarrow2x^2+8x-64=0\)
Giải phương trình bậc 2 ta có
\(x_1=-8;x_2=4\)
\(x_1=-8\) (loại)
\(x_2=4\)
Chữ số hàng chục là 4
Chữ số hàng đơn vị là 4+4=8
Số cần tìm là 48
Lời giải:
Gọi số cần tìm là $\overline{ab}$. Điều kiện: $a,b$ là số tự nhiên $\leq 9$, $a$ khác $0$
Theo bài ra ta có:
$(a+b):2=5$ và $a=b-4$
Từ $(a+b):2=5$
$\Rightarrow a+b=2\times 5=10$. Thay $a=b-4$ vô thì:
$b-4+b=10$
$2\times b-4=10$
$2\times b=14$
$b=14:2=7$
$a=b-4=7-4=3$
Vậy số cần tìm là $37$