tìm số nguyên x để các ps sau có giá trị nguyên :
13 phần x - 5
x + 3 phần x - 2
2x phần x -2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ mà bạn
Để 13 phần x-5 có giá trị nguyên thì:
13 chia hết cho x-5 nên x-5 thuộc ước của 13 ước của 13 gồm +-1;+-13
RỒI TỪ ĐÓ LẬP BẢNG GIÁ TRỊ VÀ TÌM X BÌNH THƯỜNG. !!!!!!!!!!
CHÚC BẠN LÀM BÀI TỐT
\(\frac{13}{x-5}\)
Vì \(13⋮\left(x-5\right)\)hay \(\left(x-5\right)\)là \(Ư\left(13\right)=\left\{\pm1;\pm13\right\}\)
Do đó :
x - 5 | 1 | -1 | 13 | -13 |
x | 6 | 4 | 18 | -8 |
Vậy ...................
~ Hok tốt ~
1: Để A nguyên thì x+3-4 chia hết cho x+3
=>\(x+3\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{-2;-4;-1;-5;1;-7\right\}\)
2: Để B nguyên thì 2x+4-9 chia hết cho x+2
=>\(x+2\in\left\{1;-1;3;-3;9;-9\right\}\)
=>\(x\in\left\{-1;-3;1;-5;7;-11\right\}\)
\(a,P=\left(\dfrac{2x-1}{x+3}-\dfrac{x}{3-x}-\dfrac{3-10x}{x^2-9}\right):\dfrac{x+2}{x-3}\left(x\ne\pm3;x\ne-2\right)\\ P=\dfrac{2x^2-7x+3+x^2+3x-3+10x}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x-3}{x+2}\\ P=\dfrac{3x^2+6x}{\left(x-3\right)\left(x+2\right)}=\dfrac{3x\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}=\dfrac{3x}{x-3}\\ b,x^2-7x+12=0\\ \Leftrightarrow\left(x-3\right)\left(x-4\right)=0\\ \Leftrightarrow x=4\left(x\ne3\right)\\ \Leftrightarrow A=\dfrac{3\cdot4}{4-3}=12\\ c,P=\dfrac{3\left(x-3\right)+9}{x-3}=3+\dfrac{9}{x-3}\in Z\\ \Leftrightarrow x-3\inƯ\left(9\right)=\left\{-9;-3;-1;1;3;9\right\}\\ \Leftrightarrow x\in\left\{-6;0;2;4;6;12\right\}\)
A nguyên
=>10x-15+6 chia hết cho 2x-3
=>\(2x-3\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{2;1;3;0\right\}\)
Muốn 13 phần x-5 là số nguyên thì 13 phải chia hết cho x-5
Ta có:
X-5=13
X=13+5
X=18
Vậy x=18
để 13 phần x-5 có giá trị nguyên thì 13 chia hết cho x-5
=> x-5 thuộc Ư(13)
Ư(13)={1;13}
=>x-5 thuộc {1;13}
=>x thuộc {6;18}
Vậy x thuộc {6;18}