Bài 5:(2,5đ) Cho △ABC cân tại.A. Gọi M là trung điểm của BC a) Chứng minh: △AMB = △AMC. b) (TH)Trên cạnh AB lấy điểm D ( DA > DB). Qua D vẽ đường thẳng song song với BC cắt AC tại E. Chứng minh: △ADE cân. c) Qua C vẽ đường thẳng song song với ME cắt tia AM tại K. Chứng minh: DM ⫽ BK.
#Toán lớp 7Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔAMC có
MA chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: góc ADE=góc ABC
góc AED=góc ACB
góc ABC=góc ACB
=>góc ADE=góc AED
=>ΔAED cân tại A
c: Xet ΔAKC co ME//KC
nên ME/KC=AE/AC=AM/AK
=>AD/AB=AM/AK
=>DM//BK
a: Xét ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
=>ΔAHB=ΔAHC
b: Xet ΔHBK vuông tại H và ΔHCA vuông tại H có
HB=HC
góc HBK=góc HCA
=>ΔHBK=ΔHCA
=>BK=CA=AB
c: Xét tứ giác ABKC có
BK//AC
BK=AC
=>ABKC là hình bình hành
=>AB//CK
Mk thấy đề sai hay sao ý ko có đường thẳng nào đi qua B song song vs CD và cắt DM cả
mik thấy cô ghi đè s mik ghi lại y chang chứ mik ko bik j cả. mik đọc cx thấy sai sai cái j á mà ko bik mik đọc đè đúng hay là sai nên mik mới đăng
a: Xét ΔAKB vuông tại K và ΔAKC vuông tại K có
AB=AC
AK chung
=>ΔAKB=ΔAKC
b: Xet ΔCAD có
CK vừa là đường cao, vừa là trung tuyến
=>ΔCAD cân tại C
=>CA=CD
c: Xét ΔABC có
K là trung điểm của CB
KM//AC
=>M là trung điểm của AB
cần câu c nhất ấy, mn giải chi tiết giúp mình với, mình cần gấp lắm