K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAEH vuông tại E và ΔBDH vuông tại D có 

\(\widehat{AHE}=\widehat{BHD}\)(hai góc đối đỉnh)

Do đó: ΔAEH\(\sim\)ΔBDH(g-g)

6 tháng 5 2021

Mình chỉ biết làm mỗi câu d thôi bạn thông cảm nhé !!!

d) Vì BE vuông AC, CF vuông AB(gt)

Mà BE, CF cắt nhau tại H

=> H là trực tâm của tam giác ABC

Ta có Sbhc/Sabc = 1/2 x HD xBC/1/2 x AD x BC = HD/AD      (1)

Ta có Sahc/Sabc = 1/2 x HE x AC/1/2 x BE x AC = HE/BE      (2)

Ta có Sabh/Sabc = 1/2 x HF x AB/1/2 x CF x AB = HF/CF       (3)

Từ (1), (2), (3) => HD/AD + HE/BE + HF/CF = Sbhc/Sabc + Sahc/Sabc + Sabh/Sabc

                        =>  HD/AD + HE/BE + HF/CF = Sabc/Sabc

                        => HD/AD + HE/BE + HF/CF = 1 (Đpcm)

6 tháng 5 2021

câu c nè

Chứng minh tgCEB đồng dạng vs tgCDA (g.g)=>gócEBC= gócDAC 

Do đó : tg ADC đồng dạng với tam giác BDH=>AD/BD=DC/DH

=>BD/DH=AD/DC=>BD/DH=3/4(AD PYTAGO vào tg vuông ADC ta tính được DC=4)

vậy\(\frac{BD}{DH}=\frac{3}{4}\)

a: Xet ΔHEA vuông tại E và ΔHIB vuông tại I có

góc EHA=góc IHB

=>ΔHEA đồng dạng với ΔHIB

b: Xét ΔMIB vuông tại M và ΔICH vuông tại I có

góc MIB=góc ICH

=>ΔMIB đồng dạng với ΔICH

=>IB/CH=IM/IC

=>IB*IC=CH*IM

loading...  loading...  loading...  

16 tháng 3 2022

lx r

16 tháng 3 2022

LỖI B ƠI

loading...  loading...  

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{BAE}\) chung

Do đó: ΔAEB∼ΔAFC(g-g)

b) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AF\cdot AB=AE\cdot AC\)(đpcm)

Ta có: \(AF\cdot AB=AE\cdot AC\)(cmt)

nên \(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)

Xét ΔAEF và ΔABC có

\(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)(cmt)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE chung

=>ΔABE đồng dạng với ΔACF

b: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

=>ΔHFB đồng dạng với ΔHEC

=>HF/HE=HB/HC

=>HF*HC=HB*HE