tìm tất cả các giá trị của tham số m để phương tình sau có 3 nghiệm phân biệt lập thành một cấp số nhân: x3 -(m+3)x2+(3m+2)x-2m=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
với m> -4 thì đa thức co nghiệm là số hữu tỷ, không lẽ bn học trg chuyên mà không hiểu?
Đáp án C
Đồ thị hàm số y = x 3 - 3 x + 1 là đồ thị bên dưới
Từ đồ thị hàm số y = x 3 - 3 x + 1 suy ra đồ thị hàm số y = x 3 - 3 x + 1 là đồ thị bên dưới
Dựa vào đồ thị hàm số y = x 3 - 3 x + 1 và đồ thị hàm số y = 2 m - 1
Ta có: đường thẳng y = 2 m - 1 cắt đồ thị hàm số y = x 3 - 3 x + 1 tại 4 điểm phân biệt
⇔ - 1 < 2 m - 1 < 1 ⇔ 0 < m < 1
+ Ta có hàm số g(x) = x 3 - 3 x 2 + 2 = m là hàm số chẵn nên đồ thị nhận trục Oy làm trục đối xứng.
+ Khi x≥ 0 ; g(x) = x3- 3x2+ 2
Do đó; đồ thị hàm số g(x) = x 3 - 3 x 2 + 2 có dạng như hình vẽ.
+ Dựa vào đồ thị suy ra phương trình x 3 - 3 x 2 + 2 = m có nhiều nghiệm thực nhất khi và chỉ khi -2< m< 2.
Chọn C.
x^3-x^2(m+3)+x(3m+2)-2m=0
=>(x-1)(x^2-(m+2)x+2m)=0
=>x=1 hoặc x^2-(m+2)x+2m=0
Để PT có 3 nghiệm thì (m+2)^2-4*2m>0 và 1^2-(m+2)+2m<>0
=>m<>1 và m<>2
=>x2=(m+2-m+2)/2=2 và x3=(m+2+m-2)/2=m
Để tạo thành cấp sô nhân thì
x1<x2<m hoặc m<x1<x2 hoặc x1<m<x2
=>m*1=2^2 hoặc 2m=1 hoặc m^2=2
=>m=4 hoặc m=1/2 hoặc m=căn 2