Cho A = \(\frac{n-2}{n+5}\) (n là số nguyên, n khác -5)
a) Tìm n để A là số nguyên.
b) Tìm giá trị của B = \(\left(n+5\right)^{2014}+2013\)khi A đạt giá trị nhỏ nhất.
Các bạn giúp mình nhanh một chút nhé, mai mình phải nộp rồi.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)ta có A=n-2/n+5(điều kiện như trên)
A=(n+5-7)/n+5
A=1-(7/n+5)
vì 1 là số nguyên nên để A là số nguyên thì 7 phải chia hết cho n+5
nên n+5 thuộc ước của 7
n+5 thuộc -7;-1;1;7
n=-12;-6;-4;2
b)A đạt giá trị nhỏ nhất là-6 khi n= -4(bạn tính ra nhé còn mình thì tính luôn)
B=(-4+5)^2014+2013
B=1^2014+2013
B=2014
a/ mk chua tim ra , thong cam
b/ mk tìm n = -2 ., -1 hoặc 0
a) \(A=\dfrac{n+2}{n-2}=\dfrac{n-2+4}{n-2}=1+\dfrac{4}{n-2}\)
Để A có giá trị là số nguyên thì:
\(4⋮\left(n-2\right)\)
\(\Rightarrow n-2\inƯ\left(4\right)\)
\(\Rightarrow n-2\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Rightarrow n\in\left\{3;1;4;0;6;-2\right\}\)
b) \(A=\dfrac{n+2}{n-2}=\dfrac{n-2+4}{n-2}=1+\dfrac{4}{n-2}\)
Để A là phân số tối giản thì:
\(4⋮̸\left(n-2\right)\)
\(\Rightarrow n-2\notinƯ\left(4\right)\)
\(\Rightarrow n-2\notin\left\{1;-1;2;-2;4;-4\right\}\)
\(\Rightarrow n\notin\left\{3;1;4;0;6;-2\right\}\) và \(n\in Z\) (\(n\ne2\))
c) Với \(n>2\) (hoặc \(n< -2\)) thì:
\(A=\dfrac{n+2}{n-2}>0\)
Với \(-2\le n< 2\) thì:
\(A=\dfrac{n+2}{n-2}\le0\)
*\(n=1\Rightarrow A=\dfrac{1+2}{1-2}=-3\)
*\(n=0\Rightarrow A=\dfrac{0+2}{0-2}=-1\)
*\(n=-1\Rightarrow A=\dfrac{-1+2}{-1-2}=-\dfrac{1}{3}\)
*\(n=-2\Rightarrow A=\dfrac{-2+2}{-2-2}=0\)
\(\Rightarrow\)Với \(-2\le n< 2\) thì tại \(n=1\) thì A có GTNN là -3.
Mà với các giá trị nguyên khác (khác 2) của n thì A>0.
\(\Rightarrow A_{min}=-3\), đạt được khi \(n=1\)
a) Ta có:\(\frac{n-2}{n+5}=\frac{n+5-7}{n+5}=\frac{n+5}{n+5}-\frac{7}{n+5}=1-\frac{7}{n+5}\)
Để A nguyên thì (n+5) \(\in\)Ư(7)={1;-1;7;-7)
Ta có bảng sau:
Vậy n \(\in\){-4;4;2;-12} để A là số nguyên